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Abstract—In this paper, we develop a new efficient graph
construction algorithm that is useful for many learning tasks.
Unlike the main stream for graph construction, our proposed
data self-representativeness approach simultaneously estimates
the graph structure and its edge weights through sample coding.
Compared with the recent �1 graph that is based on sparse coding,
our proposed objective function has an analytical solution (based
on self-representativeness of data) and thus is more efficient.
This paper has two main contributions. Firstly, we introduce
the Two Phase Weighted Regularized Least Square (TPWRLS)
graph construction. Secondly, the obtained data graph is used, in
a semi-supervised context, in order to categorize detected objects
in driving/urban scenes using Local Binary Patterns as image
descriptors. The experiments show that the proposed method can
outperform competing methods.

I. INTRODUCTION

Advanced Driver Assistance Systems and outdoor video
surveillance very often need to categorize detected ob-
jects/obstacles. In these scenarios, the considered classes usu-
ally determine different responses or levels of assessment
related to the situation. Class information can be integrated
within the global navigation architecture, for example, in
obstacle avoidance, mapping or tracking modules. In assistance
systems for commercial cars, classes can be used to trigger the
corresponding alarms or actions.

Based on visual data, two main categories of approaches
were developed. The first category of approaches uses a
specific class trained detector (e.g., pedestrian detection). Thus,
the detector itself will provide the class. The second category
of approaches estimates the class after a detection phase (e.g.,
[1]). The first category of approaches can be appealing if the
application focuses on one single class. However, it becomes
tedious and difficult to use whenever many classes should be
simultaneously handled. The second category of approaches
can be deployed regardless of the number of classes the system
should recognize [2].

One interesting framework that belongs to the classifica-
tion is the graph-based semi-supervised classification. This
framework allows the classification of several instances at
once given a set of labeled observations. This framework
lends itself nicely to the domains of video surveillance and
Advanced Driver Assistance. Indeed, in the related applications
a given image can contain several detected candidates (image
regions). In a video sequence, the detected candidates can be so
numerous since they are detected in space and time. Therefore,
the semi-supervised framework can label all detected objects.

Graph-based methods operate on a graph where a node cor-
responds to a data instance and a pair of nodes are connected
by a weighted edge encoding the similarity between these two
nodes. At present, the most popular graph construction manner
is based on the K nearest neighbor and ε-ball neighborhood
criteria. Once a neighborhood graph is constructed, the edge
weights are assigned by Gaussian Kernels or coefficients pro-
vided by local reconstruction algorithms [3]. In [4], the authors
propose a graph construction via b-Matching. The goal is to
produce a binary adjacency matrix with the constraint that the
resulting graph is undirected (symmetric weight matrix) and
the constraint that each node will have the same degree1 given
by the parameter b. The solution was obtained by loopy belief
propagation. It was shown that the label propagation algorithm
that uses the resulting adjacency graph, has slightly better
performance than that based on the KNN graph. However, the
b-matching graph construction needs tuning the parameter b.
Furthermore, since the output of b-matching is a binary weight
matrix, an additional stage is needed for edge re-weighting.

In [5], the authors argue that the graph adjacency structure
and the graph weights are interrelated and should not be
separated. Thus, it is desired to develop a procedure that
can simultaneously complete these two tasks within one step.
To this end, every sample image is coded as a sparse linear
combination of the rest of the training samples. This is carried
out by implementing the �1 minimization process that finds
the desired sparse representation of that sample. The obtained
sparse coefficients will reflect the relation among samples, and
hence will provide the graph adjacency structure as well as the
weights of its edges.

This paper has two main contributions. Firstly, we intro-
duce the Two Phase Weighted Regularized Least Square (TP-
WRLS) graph construction. Secondly, the obtained data graph
is used, in a semi-supervised context, in order to categorize
detected objects in driving/urban scenes using Local Binary
Patterns (LBP) as image descriptors. The whole proposed
framework can be useful for at least two schemes: (i) inferring
labels in large datasets having a tiny fraction of labeled
samples, and (ii) online categorization of detected objects. One
of the advantages of the LBP descriptor is its constant and
low dimensionality whatever the number of considered pixels
from which low-level features are extracted. Furthermore, the
LBP descriptor has been considered as a good discriminant
feature. The paper is organized as follows. Section II briefly

1The degree of a node is equal to the sum of weights of all edges linked
to that node.
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describes some graph construction methods. Section III briefly
describes the LBP descriptor. Section IV presents our proposed
graph construction method. Section V presents the application
of the proposed graph to the problem of semi-supervised
categorization of outdoor objects.

II. GRAPH CONSTRUCTION

A. Traditional graph construction (K-Nearest Neighbor and
ε-Neighborhood Methods)

The classic graph construction is decomposed into two
separate and independent processes. First, the adjacency matrix
is constructed (edges are set). Second, the weights of the edges
are estimated.

For adjacency matrix construction, the K-Nearest Neighbor
and ε-Neighborhood Methods can be used in order to find the
neighbors of a datum. In both methods there is a function that
defines the distance (similarity) of one input with respect to
the others. In ε-Neighborhood method the data which have
the distance (similarity) less (more) than the threshold ε, will
be selected as neighbors. The drawback of ε-Neighborhood
method is that there might be some inputs without neighbors.
Furthermore, the value of ε is user-defined, so different values
should be tested in order to find the optimum one. The
KNN graph remains the more common approach since it is
more adaptive to scale and data density while an improper
threshold value in the ε-neighborhood graph could result in
disconnected components or subgraphs in the dataset or even
isolated singleton vertices.

In the second phase, a weight should be assigned to each
constructed edge. In general, this weight should quantify the
similarity between two connected nodes. Let sim(xi, xj) be
the similarity score between neighbors xi and xj , then the
elements of the graph weight matrix W are given by Eq.
(1). There are several choices for sim(xi, xj). For instance,

[6] uses the heat kernel sim(xi, xj) = e−
‖xi−xj‖2

t with
different gaussian variance t values. In the extreme case where
t → ∞ the weights will become 0 and 1. 0 when there
is no connection and 1 when two nodes are connected. The
authors in [7] proposed the use of inverse of distance as weight,
sim(xi, xj) = 1

||xi−xj || .

Wij =

{
sim(xi, xj) if xi and xj are neighbours
0 otherwise

(1)

It is worth to mention that the KNN graph can be used
as a first stage (providing a binary adjacency graph) in more
sophisticated graph construction methods such as the method
presented in [8].

B. �1 graph construction

Instead of building a graph in two different processes of
adjacency construction and weight calculation, the authors in
[5] tried to unify them in one single process. In their proposed
method every sample is coded as a sparse linear combination
of the rest of the training samples and the contributions of
images in representing the sample are considered as weights.

Consider a D dimensional vector y as an input and and a
D×N database matrix X, containing N samples. The goal is
to represent input y as a sparse linear combination of database
matrix X. Mathematically, it can be written as

min ||b||1 s.t. y = X b (2)

where vector b ∈ R
N is the coefficient vector. Due to the

presence of noise, Eq. ((2)) will become

min ||b||1 s.t. ‖y− X b‖2 < ζ (3)

which ζ represents a given tolerance error.

By solving the above minimization problem, the sparse
vector b shows the contribution of each sample in reconstruct-
ing the input signal y. As the vector b is sparse a lot of
its elements are zero and few of them have non-zero values.
Samples in the database which are far from the input signal
will have very small or zero coefficients. The more similar a
signal in the database to the sample, the bigger it’s coefficient.
In this way the neighbors and their weights are calculated
simultaneously.

There is also a formulation that can account for sparse
outliers in the signals. This is given by:

min ||b||1 + ||e||1 s.t. y = Xb + e (4)

The above problem can be casted into the form given in (2)
by solving for the augmented vector b′ = (bT , eT )T :

min ‖b′‖1 s.t. [X I] b′ = y (5)

Therefore, by using the above coding for every train-
ing sample xi and calculating sparse vector bi, one can
construct the W matrix using the set of computed vectors
(b1, b2, . . . , bN ). A directed graph with an asymmetric weight
matrix W can be constructed using two following formulas:
Sparsity Induced Similarity (SIS) [9] or [5]. It was shown in
[10] that both formulas have given similar performances.

(SIS):Wij =
max{bi(j), 0}∑N
j=1 max{bi(j), 0}

, �1 graphWij = |bi(j)|

Alternatively the �1 can also be solved by the following
least absolute shrinkage and selection operator (LASSO):

b = argmin
b
||y− X b||22 + λ ||b||1 (6)

C. LLE graph construction

Locally Linear Embedding (LLE) focuses on preserving
the local structure of data. LLE formulates the manifold
learning problem as a neighborhood-preserving embedding,
which learns the global structure by exploiting the local linear
reconstructions. It estimates the reconstruction coefficients by
minimizing the reconstruction error of the set of all local
neighborhoods in the dataset. It turned out that linear coding
used by LLE can be used for computing the graph weight
matrix.
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Thus, LLE graph can be obtained by applying two stages:
adjacency matrix computation followed by the linear recon-
struction of samples from their neighbors. The adjacency
matrix can be computed using the KNN or ε-Neighborhood
method. The non-zero entries of the weight matrix W are
estimated by reconstructing the sample from its neighboring
points and minimizing the �2 reconstruction error defined as

N∑
i=1

‖xi −
∑
j

Wij xj‖2 s.t.

N∑
j=1

Wij = 1.

where Wij = 0 if xi and xj are not neighbors.

III. LOCAL BINARY PATTERNS

(a)

(b)

Fig. 1. (a) Example of basic LBP operator. (b) Example of LBP descriptor.

The original LBP operator labels the pixels of an image
with decimal numbers, which are called LBPs or LBP codes
that encode the local structure around each pixel [11]. It pro-
ceeds thus, as illustrated in Figure 1: Each pixel is compared
with its eight neighbors in a neighborhood by subtracting the
center pixel value; the resulting strictly negative values are
encoded with 0, and the others with 1. For each given pixel, a
binary number is obtained by concatenating all these binary
values in a clockwise direction, which starts from the one
of its top-left neighbor. The corresponding decimal value of
the generated binary number is then used for labeling the
given pixel. The histogram of LBP labels (the frequency of
occurrence of each code) calculated over a region or an image
can be used as a texture descriptor. The size of the histogram is
2P since the operator LBP (P,R) produces 2P different output
values, corresponding to 2P different binary patterns formed
by P pixels in the neighborhood. LBP methodology has been
developed recently with large number of variations to improve
performance in different applications. These variations focus
on different aspects of the original LBP operator.

IV. PROPOSED LBP GRAPH CONSTRUCTION

Given N images (depicting different objects) I1 ∈
R

d1 , I2 ∈ R
d2 , . . . , IN ∈ R

dN and their LBP descriptors
x1, x2, . . . , xN ∈ R

D, we aim to build the graph G that models
the pairwise similarities among images. We stress the fact that
the images can have different sizes. However, their descriptors
have the same size. In other words, D = 2P if all binary
patterns are used in the histograms and D = P (P − 1) + 3
if only uniform patterns are used in the histogram estimation

where P is the number of neighboring points used by the LBP
operator.

We assume that each sample or image descriptor is repre-
sented by a sparse combination of the rest of the samples in
the database through some coefficients. The obtained coeffi-
cients show the contribution of all samples in reconstructing a
given one and demonstrate the similarity between them. These
coefficients are then used to build the graph. Therefore, this
assumption is the one adopted by �1 graph. However, we will
show that our proposed method has similar or even better
performance than that of �1 graph, yet with the clear advantage
of being more efficient.

Our proposed method mainly relies on the Weighted Reg-
ularized Least Square minimization (WRLS) [12] that is based
on �2 minimization. We stress the fact that, in [12], the WRLS
was used in order to build a Collaborative Neighborhood
Classifier (CNR) as an alternative to the recent �1 based
Sparse Representation Classifier (SRC) [13], [14], [15]. In our
method, there are two main differences with [12]. First, we ad-
dress graph construction through the use of self-representation
coefficients. Second, for estimating the graph weights, we
introduce a Two Phase estimation scheme where the second
WRLS phase uses only samples having high similarity and
adaptively chosen without any predefined parameter. These
two phases (described below) enforce the locality constraints
in constructing the graph.

A. Weighted Regularized Least Square minimization

Assume we have a datum y and want to represent it by
a linear combination of samples (or subset) of the dataset X
as y = X b, where b is a N dimensional vector containing
the weights of all samples in the database in representing y
and X = [x1x2...xN ] (D × N matrix) is the data matrix. We
assume that each sample xi is normalized using its �2 norm.
The general formula to solve the above equation will be

min ||b||r s.t. ‖y− Xb‖2 < ε (7)

which tries to represent the datum y by the smallest
||b||r which represents the �r-norm of b (i.e., ||b||r =
(
∑

j |b(j)|r)1/r.

In our work, we use the �2 norm of residual error with
sparsification. Our sparsification consists in two main modules.
The first one uses a weighted regularization in which each
unknown coefficient has an independent weight derived from
the similarity between the test sample and the corresponding
sample in the dataset. The second module uses a two phase
WRLS where the second stage only uses samples having
large coefficients and adaptively chosen without any predefined
parameter. Unlike the �1 minimization, the �2 norm, Eq. (7)
will have a closed form solution and it can be calculated in a
more efficient way.

The unknown vector b can be calculated by minimizing
the following criterion (WRLS):

b = argmin
b

1

2

⎛
⎝ ‖y− Xb‖22 + σ

N∑
j=1

p2j b
2
j

⎞
⎠ (8)
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where pj is a positive weight associated with example xj (or
equivalently bj). The solution to Eq. (8) will reconstruct the
input signal y by a combination of the space spanned by X. In
Eq. (8), the criterion has two terms: the reconstruction error
and the weighted regularized term. Thus, σ is a small positive
scalar that balances the two terms effect.

By having different values for pi one can control the
coefficients getting bigger or smaller. The bigger the pj is the
smaller the bj would be and vice versa. By using simple linear
algebra calculations, the solution to Eq. (8) has a closed form
solution that is given by:

b =
(

XT X + σ P
)−1

XT y (9)

P is a diagonal matrix with elements Pjj = pj . In our work,
we use the following formula:

pj = 1− exp(−‖y− xj‖2) (10)

B. Graph construction using Two Phase WRLS (TPWRLS)

We have seen above that the weighted regularization term
imposes a kind of sparsification on the coefficients bi due to
the use of the weights. In this section, we will propose an ad-
ditional sparsification module that acts by invoking two passes
of the WRLS minimization process. The first pass considers
the whole data as a dictionary for WRLS minimization. Once
the vector of coefficients is estimated, a subset of examples
will be selected from the original dictionary and used as the
new dictionary for a second pass of WRLS. The selection will
rely on the magnitude of the coefficients.

Once the first pass is achieved, we have an additional
information provided by the estimated coefficients bj . Indeed,
|bj | provides a similarity measurement between the sample y
and the example xj . Thus, our intuition is to keep the most
similar examples and remove the remaining ones by exploiting
the calculated vector b. To do so, we compute an average

similarity as A = 1
N

∑N
j=1 |bj |.

Let Xs be the data matrix formed by the selected examples
(the ones whose |bj | is greater than the average similarity). In
practice, we can use any threshold that belongs to [A, bmax[.
Then, the vector b′ associated with the selected examples will
be solved using a formula similar to Eq. (9):

b′ =
(

XT
s Xs + σ P′

)−1
XT

s y (11)

where the diagonal weights p′j are given by:

p′j =
1

|bj | (12)

In order to avoid a very high disparity among the obtained p′j
weights, we normalized them using a unit variance normaliza-
tion scheme. The above weights can reinforce the sparsification
of the new estimated coefficients. Furthermore, the size of the
data matrix Xs in the second phase is smaller than that of the
whole data matrix X and, hence, the coefficients obtained in
the second phase are sparser in comparison to those obtained
in the first phase with the whole database. In the TPWRLS,
the original N-vector b is set as follows. A non-selected

example xj will have bj = 0 and a selected one will have
the corresponding coefficient in the vector b′ estimated by Eq.
(11).

The detailed procedure for the TPWRLS graph construc-
tion is listed in Algorithm 1. This algorithm estimates the ith

row of the affinity matrix by coding the sample xi w.r.t. to
the set X−{xi}. Note that the constructed graph is a directed
graph, i.e., the weight matrix W is asymmetric.

Data: A given training sample set X
Result: A weight matrix W

Set the diagonal elements of W to zeros ;
for i = 1, . . . , N do

Pick the sample xi and form the data matrix X′ = X
- {xi} ;
Compute the (N − 1)× (N − 1) diagonal matrix P
using Eq. (10) ;
Calculate the (N − 1)× 1 vector b as
b = (X′T X′ + σ P)−1X′T xi ;
Compute the average similarity for xi as

1
N−1

∑N−1
j=1 |bj | ;

Set the selected samples Xs (|bj | are above the
average similarity);
Form the new diagonal weight matrix P′ using Eq.
(12) ;
Calculate the vector b′ as
b′ =

(
XT

s Xs + σ Ps

)−1
XT

s xi ;
Set the sparse vector b from b′ ;
for j = 1, . . . , N do

if i < j then
Set Wij = |bj |

else
Set Wij = |bj−1|

end
end

end

Algorithm 1: TPWRLS graph construction.

V. PERFORMANCE EVALUATION

We evaluate the proposed graph construction method
for solving the outdoor object categorization using semi-
supervised learning. These objects can be captured by either
a surveillance camera or an onboard camera. We assume
that the detection of the image regions of these objects is
carried out by algorithms like the ones described in [16], [17]
for surveillance camera scenarios and by the detection and
tracking algorithms described in [9], [18] for onboard cameras.
Unlike supervised schemes (e.g., [19]) where observations are
classified individually, the semi-supervised framework offer
the possibility to infer the category of one or more detected
objects at the same time (obstacles in a single or several
video frames). In this section, we will present the graph-based
label propagation framework used for evaluation. Then, we
will present the quantitative evaluation using different graph-
construction schemes applied to the outdoor object categoriza-
tion.
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A. Graph-based Label Propagation

The graph-based label propagation method imposes that
samples with high similarity should share similar labels. Using
this idea, one can propagate the labels of known samples to
unknown ones and infer their labels. This idea can be written
as

miny
i
,i=1,...,N

∑
i,j

||yi − yj ||2Wij (13)

where yi is the posterior probability of samples belonging to
C different classes, namely, yi(c) = p(c|xi); c = 1, 2, . . . , C,
and W is the similarity matrix associated with the graph. For
a labeled sample xi, yi(c) = 1 if xi belongs to the cth class;
yi(c) = 0, otherwise. Consider the data matrix X = [Xl Xu]
(a D× (p+ q) matrix) containing labeled and unlabeled data,
and the label matrix Y = [Yl Yu] (a C × (p+ q) matrix).

Given the data matrix as well as the known labels, Yl, the
goal is to derive the labels of unlabeled samples, Yu. It can
be shown that the matrix of unknown labels is given by:

Yu = −Yl Llu L−1
uu (14)

where Llu and Luu are submatrices of the Laplacian matrix
L:

L =

(
Lll Llu

Lul Luu

)

L is given by L = (Drow −W) + (Dcol −WT ) where Drow

and Dcol are diagonal matrices whose elements are the row
and column sums of W matrix, respectively.

Fig. 2. Three classes of outdoor objects: Pedestrians, Cars/Vans, Motor-
bikes/bikes. Three examples in each class are shown.

B. Experimental results

We performed two groups of experiments. In the first
group, the evaluation was carried using a whole dataset where
the samples of each class were acquired using a given protocol.
In the second group of experiments, we used labeled samples
from a given dataset and unlabeled samples from another
dataset.

For the first group of experiments, we used images de-
picting three classes (Pedestrian, cars/vans, and motorbikes)
(See Fig. 2). The car and motorbike images were retrieved
from PASCAL VOC2011 Example Images2. The pedestrian
images are retrieved from CVC-01 Classification Dataset3.
We gathered 450 images and used the whole set of images
in a graph-based label propagation. Their LBP descriptors
were retrieved using the uniform patterns. The compared graph

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/examples/index
3http://www.cvc.uab.es/adas

construction methods (the affinity matrix used in Eq. (13)) are:
KNN graph, LLE graph, �1 Graph [5], �1 (LASSO) Graph,
WRLS, and the proposed TPWRLS. For �1 graph, the criterion
(5) was optimized using the Matlab package provided by
[20]. The LASSO optimization is carried out using the SLEP
package4.

In WRLS technique only the most similar samples for each
row in the affinity matrix are used. Table I illustrates the correct
labeling percentage obtained with different graph construction
methods. These are average results that correspond to ten runs
of the recognition algorithm with random partitions for labeled
and unlabeled samples. For KNN and LLE graphs, this table
depicts the best results obtained over a range of values for the
neighborhood size. We can observe that (i) by increasing the
number of labeled samples the increase in the success rate of
all methods will not be very significant, (ii) most of the time
the best results were obtained with the proposed TPWRLS
method, and (iii) by increasing the radius of the LBP operator
the recognition rate of all methods increases.

TABLE I. AVERAGE RECOGNITION RATE FOR DIFFERENT

GRAPH CONSTRUCTION METHODS AND FOR DIFFERENT LABEL

NUMBERS. THE GRAPHS WERE BUILT USING THE UNIFORM

PATTERN LBP HISTOGRAMS WITH P = 8 AND R = 1 (UPPER

TABLE), R = 2 (MIDDLE TABLE) AND R = 3 (LOWER TABLE).

R = 1 5 10 15 20 25 30 45

KNN 83.13 84.81 87.98 88.44 88.83 89.53 91.62

LLE 83.31 86.12 87.70 88.31 88.99 90.08 92.48

�1 82.53 90.48 91.75 92.33 93.36 94.14 96.54

�1(LASSO) 78.78 81.62 82.59 82.46 82.93 83.28 84.22

WRLS 78.30 82.19 84.02 84.46 85.39 86.92 89.17

TPWRLS 83.22 87.95 90.37 91.41 93.01 93.64 95.17
R = 2
KNN 86.78 91.05 92.64 93.15 94.16 94.64 96.38

LLE 89.40 92.12 93.90 94.44 94.96 95.64 96.57

�1 81.56 90.07 92.99 93.90 94.67 95.31 96.76

�1(LASSO) 79.63 79.98 82.27 82.59 83.52 83.22 83.94

WRLS 84.14 86.48 90.20 90.92 92.21 92.17 93.78

TPWRLS 88.21 91.95 95.09 96.21 96.48 97.06 97.65
R = 3
KNN 86.67 92.24 94.79 95.23 95.44 95.56 95.84

LLE 91.68 93.14 95.06 95.38 96.13 96.33 97.27

�1 78.53 91.81 93.21 94.69 96.08 96.47 97.27

�1(LASSO) 84.09 89.86 89.58 90.44 91.12 91.44 92.51

WRLS 80.32 85.38 89.31 90.36 92.37 92.64 94.6

TPWRLS 87.49 92.62 94.35 94.9 96.61 96.89 97.49

TABLE II. CONFUSION MATRIX FOR ONE RUN. THE NUMBER

OF LABELED SAMPLES WAS KEPT FIXED TO 10 IMAGES PER

CLASS. THE UPPER TABLE CORRESPONDS TO THE KNN GRAPH

AND THE LOWER TABLE TO THE PROPOSED TPWRLS GRAPH.

KNN Car (140) Pedestrian (140) Moto (140)

Car (pred.) 139 1 13

Pedestrian (pred.) 0 129 1

Motor (pred.) 1 10 126

TPWRLS Car (140) Pedestrian (140) Moto (140)

Car (pred.) 133 0 10

Pedestrian (pred.) 3 140 2

Moto (pred.) 4 0 128

Table II depicts the confusion matrix for a given run and
for a fixed number of labeled samples (10 images per class).
The upper part corresponds to the KNN graph and the lower
part to the proposed TPWRLS graph. For both graph methods,
we can observe that the motorbikes class was the most difficult
class to be recognized. This can be explained by the high

4http : //www.public.asu.edu/j̃ye02/Software/SLEP
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TABLE III. CPU TIMES (IN SECONDS) ASSOCIATED WITH THE GRAPH

CONSTRUCTION METHODS (450 IMAGES).

KNN LLE �1 �1 (LASSO) WRLS TPWRLS

CPU time 0.04 2.1 16.8 0.67 0.45 2.1

variability of texture and color of motorbikes. The F1-measures
for the three classes (car, pedestrians, and motor-bikes) are
0.948, 0.955, and 0.909, respectively when KNN graphs were
used. These F1-measures become 0.940, 0.982, and 0.941
when the TPRWLS graph is used. This means that the use
of the proposed graph method has improved the F1-measures.
Table III illustrates the CPU time (seconds) associated with
the graph construction (450 images) for KNN, LLE, �1, �1
(LASSO), WRLS and the proposed method, respectively. The
label propagation took 20ms for 420 images for all methods.
We used MATLAB running on an Intel Core i7 CPU at
2.93 Ghz and 8 GB of RAM. As can be seen the fastest
approach was the KNN method. The best accurate results were
obtained with the proposed method with 2.1 seconds. The
WRLS technique needed about one fourth of that time but
has not the same accuracy.

In the second group of experiments, we used samples ac-
quired and detected by a developed video surveillance system
whose goal is to detect dangerous situations in level crossing
environments [21]. The detected moving objects are then used
as the unlabeled samples. In this case, we use three classes
(Pedestrian, cars/vans, and road). The labeled samples for the
pedestrian and car classes are set to the data used in the first
group of experiments (50 car images, 50 pedestrian images,
15 road images). For the unlabeled (test) samples, we used
50 car images, 150 pedestrian images, and 14 road images.
The obtained recognition rates for KNN, LLE, �1 and the
proposed TPWRLS graphs were 84.5%, 84.6%, 85.1% and
89.25%, respectively.

As can be seen the performance of all graph methods
decreased a bit compared with the first group of experiments.
Nevertheless, it can be considered as good since the unlabeled
samples are associated to a completely different scenario.

Fig. 3. Test outdoor objects captured by a video surveillance system.

VI. CONCLUSION

In this paper, we have proposed a locality constrained graph
construction method that is based on Two Phase Weighted
Regularized Least Square coding. The proposed data graph
is used, in a semi-supervised context, in order to categorize
detected objects in driving/urban scenes. It has been shown
that our proposed graph construction method can give better
performance than many state of the art graph construction
methods including the most recent �1 graph.
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