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Abstract—Automated behaviour recognition is a challenging
problem and it has recently gained momentum in biological
behaviour studies. This paper describes a framework for track-
ing and automatical classification of the behaviour of multiple
freely interacting Drosophila Melanogaster (fruit flies) in a low
resolution video. The movements of interacting flies are recorded
by Flyworld, a dedicated imaging platform. Each individual fly
is identified in every frame and tracked over the complete video
without losing its identity. The orientation of the flies is tracked as
well, by defining their head and tail positions. From the obtained
tracks, temporal features for every pair of fly are derived, allowing
quantitative analysis of the fly behaviour. In order to derive
information of the fly social activity, we concentrate on 2 specific
behaviours: ’sniffing’ and ’chasing’. Experimental results show
that the classifier is able to classify the correct behaviour with an
average overall accuracy of 95.46%.

I. INTRODUCTION

The analysis of behaviour has recently been a very ac-

tive research topic [2], [5], [6], [14]. Behaviour classification

finds applications in a wide range of area’s, including video

surveillance, neuroscience, social robotics. Animal behaviour

classification is a challenging problem for computer vision

researchers. There are a lot of practical advantages of studying

animal behaviour. Firstly, segmentation and tracking of animal

is easy in laboratory setups, where the background does not

change with time. Secondly, animal behavior is relatively

simple and easy to understand as compared to human behaviour

[2]. Thirdly, data acquisition is practical and reproducible [2]

and it can be collected by multiple recording sessions. Thus,

studying behaviour in animals presents an opportunity for mak-

ing progress on modeling and classifying behaviour, especially

social behaviour, which is difficult to study in humans [2].

Animal behaviour recognition also helps biologists to un-

derstand the neurobiological basis of social abnormalities in

psychiatric disorders [5]. A central issue in analysis of these

behaviour is reliable recognition of specific behavioural param-

eters. In such investigations, a manual scoring of the social

interactions is still the preponderant experimental bottleneck

[1]. Indeed, manual scoring could be an ideal solution, but it

becomes almost impossible when it comes to analyse videos

with several thousand frames. Also, manual scoring would suf-

fer from lack of reproducibility and standardization. Moreover,

it becomes even more challenging when multiple animals are

involved.

Hence, there is an increasing interest in development of

systems with automated behaviour analysis from video. Re-

searchers have worked on automating the recognition of Rodent

behaviour, but no substantial work has been done on analysis of

fly behaviour, which is equally important for biologists. Flies

are the perfect model for genetic manipulation since they grow

fast, exhibit simple behaviour and are easy to handle in different

ways, compared to the months of waiting for rodent models

which show complex behaviour during interaction. Automating

the analysis of fly behaviour is challenging. Firstly, building a

system that accurately tracks the moving flies is technically

difficult. Secondly, lack of accurate and standard definition of

a behaviour makes an automated classification method more

difficult. Lastly, inadequate availability of benchmark dataset

restrains the evaluation of the algorithm [2].

Keeping all these challenges in mind, we present a frame-

work of an automated technique for behaviour classification of

freely interacting Drosophila Melanogaster (fruit flies).

In this framework, the first issue to be tackled is ”multiple fly

tracking”, i.e. automatic detection of positions of multiple flies

in each frame and linking of the flies found in a previous frame

with the flies in a current frame without losing their identity.

The second issue to be addressed is the automatic analysis of

fly behaviour. This involves recognition and classification of

certain fly behaviours as temporal actions, from a video of

multiple freely interacting flies.

With the development of these machine learning and com-

puter vision applications, we intend to help the biologists

in automatic monitoring of the behaviour of Drosophila
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(a) (b)

Fig. 1. The two behaviour events. Figure 1(a) shows the chase event. The
green and red dots indicate the presence of two different flies. The flies position
is overlaid for every third frame to get a proper view. Figure 1(a) shows a red
fly chasing a green fly. Figure 1(b) shows the Sniff event. The red fly is sniffing
the green fly.

Melanogaster.

In this work, we will concentrate on 2 different categories of

social behaviour: Chase and Sniff. Figure 1 shows instances of

the Chase and Sniff categories. We will describe the tracking,

the calculation of behaviour features and the classification of

behaviours into one of these 2 types of social behaviour, or the

’no-behaviour’ class.

The structure of the paper is as follows. In Section II we

discuss the related work. We define the behaviour classes in

Section III. In Section IV we present our proposed method.

Section V describes the experiments. Section VI shows the

result and discussion. Finally, we conclude in Section VII.

II. RELATED WORK

Tracking and behaviour recognition are often related prob-

lems and many approaches of behaviour recognition are based

on tracking models of varying sophistication, from paradigms

that use explicitly shape models in either 2D or 3D to those that

rely on tracked features [9]. On a general overview, the time

series trajectory obtained from the tracking acts as a descriptor

for behaviour recognition.

Heiko Dankert et. al. [14] introduced a machine learning

method to study the aggression and courtship behavior in

Drosophila Melanogaster. Their tracking algorithm, QTrack and

analysis package, Caltech Automated Drosophila Aggression-
Courtship Behavioral Repertoire Analysis (CADABRA) is able

to monitor interacting pair of flies and extract features which

are used to detect behaviors exhibited during aggression and

courtship. Therefore, the study is restricted to behavior analysis

of only a pair of fly. Thus, their tracking method and analysis

could not be implemented in studying the social behavior of

more than a pair of flies.

Burgos-Artizzu et al.[2] adopted an approach of classifying

pair wise behaviour of a mouse. They adopted an approach

based on machine learning, where the behaviour is learned

from examples given by the human annotators. Initially, their

undisclosed algorithm tracks a mouse and extracts the temporal

features. A machine learning model (AdaBoost [12]) is trained

to classify the behaviour of the mouse. Although, it provides

an extensive work on behaviour classification, yet it fails to

generalise over multiple mice interactions or under different

experimental conditions[5].

Their behaviour classification results were further improved

by Giancardo et al [5]. They identify each mouse using a

temporal watershed and mice matching module, which is an

approximation of the Hungarian algorithm. It is able to track

multiple mice in experimental conditions. Pair-wise spatio-

temporal features from the trajectories of each mouse act as

descriptors for the behaviour classification. However, these

works focused on rodent models.

JAABA developed by Kabra et.al. [6], the current state

of the art, proposed an interactive machine learning tool for

automated annotation of animal behaviour including fruit flies.

The behaviour classification was built on top of the results

of their tracking algorithm CTrax [1]. In order to track, the

flies in every frame were segmented and their positions in past

and future frames were linked as a linear assignment problem

using the Hungarian algorithm. A set of high resolution features

define the behaviour of flies and the Gentleboost algorithm

[13], a modification of the AdaBoost [12] algorithm, was used

to classify the behaviour. However, it was built as a binary

classifier. The biologists manually annotate any one class at a

time and observe the predictions of the classifier. All the false

positive events are manually corrected and the classifier is re-

trained. This way of iteratively training the classifier reduces

the number of false positives and thus increases the accuracy.

However, it is time consuming and only one behaviour class

can be classified at a time.

We will treat the same problem of automated behaviour

classification as a multi-class classification where we train the

classifier with three different classes at the same time. Based

on the features, the classifier predicts the classes, thus reducing

the time and manual efforts of annotating video with different

classes.

All of the related work has been done on a high resolution

video. However, not all biologists require high resolution and

sophisticated mechanisms to study the fly behaviour. Social

biologists looking at the social index [7] of flies or studying

the effect of social isolation of flies [10] are not concerned

about the high level behaviour. These studies do not require

specific physical details of flies e.g. wing extension angle, an-

tennae angle, position of legs etc. Moreover, the study involves

detection of interactions and quantification of social network

based on these interactions. The study requires classification of

social and non social behaviour that can even be detected at

low resolution. Another motivation for using low resolution

camera’s is to provide larger fields of view in experiments

studying e.g. effects of social isolation in fly behaviour.

In our previous work, [8] we state the critical problem with

using low resolution data. We have shown the limitations of

usage of the current state of art, CTrax [1] on low resolution

video. Moreover, we also state the motivation behind devel-

oping a method which works for low resolution data was the

inability of standard algorithm used in CTrax [1] to provide

desired result on low resolution data. In our current work,

we provide a computational framework for behaviour analysis

on low resolution video, integrating our tracking algorithm,

FlyTracker [8] and a new method for classifying behaviours

of a group of freely interacting fruit flies.

III. BEHAVIOUR CLASS DEFINITION

Data is acquired using the FlyWorld [8], a dedicated imaging

platform. Typically, 20 interacting files are recorded, videos last

2324



Fig. 2. Overview of our approach. The flies in the input video are tracked and
their orientation ambiguity is resolved. Pair wise spatio-temporal features are
calculated from their trajectory. A classifier is trained on these features. The
green and the red points indicate the result of the orientation ambiguity. The
green points indicate the nose while the red points indicate the tail of each fly
at different time points.

around 20 minutes and are recorded at 30 fps with a field of

view of 410x410 pixels.

The behaviour classes are defined in collaboration with

biologists involved in the study of the effect of social isolation

in fly behaviour. The touching event is the most occurring

social behaviour amongst the fly behaviour and intuitively all

subsequent behaviour follows from this. The behaviours are

classified in a set of three different mutually exclusive action

categories. 2 behaviours are the Chase and Sniff. The third

class is the None which is defined as a pair of flies that does

not display any social behaviour. These classes were chosen

since these behaviours make an obvious choice of studying the

effect of social isolation on fly behaviour. In every video,

the flies start with exploring the FlyWorld chamber and then

start interacting with other flies. The fly which starts to interact

by approaching the other fly and makes a nose-to-tail touch is

known as a principal interactor fly. This behaviour is defined as

a Sniff. If the principal interactor fly finds out that the interactee

fly is a female fly, then the former tries to copulate with the

latter. During this event, the interactor fly walks behind the

interactee. This behaviour is defined as Chase. Figure 1 shows

example video frames for each behaviour in top view. All other

behaviours are defined as None.

Every possible pair of flies in the video frame is labelled

as one of the three categories, resulting in segmentation of the

videos into action intervals. The start and end of each category

has to be accurately defined.

A GUI was developed in MATLAB to annotate these be-

haviours. This tool provides a frame by frame view of the movie

with a play back feature, thus providing the human annotator

to carefully analyse the videos.

IV. PROPOSED METHOD

Figure 2 shows an overview of our approach. Our approach

comprises two challenges: tracking all flies at low resolution

without losing their identity and extracting temporal features

to train the classifier.

In our previous work [8] we have shown that CTrax tracking

results [1] lose the identity of flies in low resolution video. This

makes the classification solution as described in [6] inadequate

for low resolution videos.

In [8], we proposed a tracking algorithm for low resolution

video. FlyWorld, the imaging setup allows the videos to be

recorded with constant background. In our setup, flies appear as

dark dots on a light background. The background is modeled by

selecting the frames at a reduced sampling rate and taking the

pixel-wise maximum over all selected frames. We used a two

step Hungarian algorithm. While the first step of the Hungarian

algorithm provides an estimate of the number of flies in a group

of interacting flies, the second step helps in linking the flies

from a previous frame to a current frame. Figure 3 shows the

procedure. This has greatly improved the tracking results with

respect to CTrax, as is shown in Table I.

A. Body Points

In the current work, we discuss the feature extraction and

classification steps. The tracking results yield weak trajectory

features such as velocity, acceleration etc. which are derived

from the position of fly centroid at every consecutive frame.

The low resolution of the video restricts a clear and distin-

guishing view of the fly orientation. In order to describe the

wanted behaviour classes, more anatomical points than only the

body centroid are required. We will define the nose and the tail
as body points. The definition of these body points is required

to resolve the orientation ambiguity. In order to resolve this

ambiguity, we make an assumption that the orientation of a fly

body and the direction of the fly’s velocity will approximately

match [1]:

Let θt, φt and vt be the orientation, velocity direction and

speed of a fly at frame t, and T the total number of frames in

the video. An indicator function st ∈ {0,1} indicates whether

π needs to be added to the orientation or not i.e. θ′ = θ +

πst. The indicator function st is obtained by minimizing the

following criterion:

J(s1:T ) =

T∑

t=1

[J1(st) + J2(st, st−1)],Where (1)

J1(st) = w(vt) | (θt + πst − φ)(−π,π] | (2)

J2(st, st−1) = (1−w(vt)) | (θt + πst− θt−1− πst−1)(−π,π] |
(3)

The equation 2 penalizes the orientations θt + πst that differ

from the velocity direction φt. Since for flies that are sitting

still, the direction of their velocity does not relate to their

orientation, weights w(vt) are introduced to make the error

term proportional to the magnitude of velocity of the fly.

The equation 3 penalizes the orientation at frame t, θt + πst,
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(a) Estimate the number of in-
teracting flies, k

(b) Segmentation with k = 2

Fig. 3. Result of an estimate of the number of flies using the Hungarian
Algorithm. It is assumed that only the nearby flies will have the tendency to
interact with each other. Thus a linear assignment problem will give an exact
estimate of the number of interacting flies. The vertices P1,..,P4 represent the
individual flies in a previous frame, while C1 and C2 represent the candidate
blobs with multiple flies. C11, C21 are the newly appended vertices, which
represent the nearby flies in previous frames. The weights w represents the
distance between the flies in two subsequent frames.

differing from the orientation at frame t - 1,θt−1 + πst−1.

Once the orientation ambiguity is resolved, points represent-

ing the nose and the tail are defined.

B. Temporal Features

In order to capture the different behaviours of flies, the

feature vector needs to describe the relative motion between

pairs of flies. A feature vector for every possible pair of flies,

Xα⇒β
t (α is the principal interactor fly and β is the interactee

fly) is constructed using a set of temporal features. A sliding

window centered at each frame is used to extract these temporal

features. The optimal sliding window size is directly related to

the duration of behaviours[2]. A series of experiments with

different window sizes provided an optimal window size of 11

frames (≈ 0.36 sec).

The feature vector is a 23-dimensional vector, which measures

following two categories:

Relative Position: The Euclidean distances measured be-

tween each pair of flies. This distance is measured between

the corresponding nose of the principal interactor fly and the

tail of the interactee fly. This feature does not represent action

dynamics.

Movement: These spatio-temporal features represent the

fly’s action dynamics in past and future frames. A window

size of 11 frames is defined as described above to measure

the action dynamics. Specifically two distances are measured

in this temporal window: one describing the pairwise distance

between the body of the principal interactor fly and the body of

the interactee fly, and another describing the displacement of

the principal interactor fly over the time window, t-5, t-4,...t+4,

t+5.

C. Classification

A classifier which can differentiate between the behaviours

is developed using a Support Vector Machine (SVM) [4] using

Gaussian radial basis function kernels (RBF). SVM maps the

TABLE I
PERFORMANCE OF FLYTRACKER AND CTRAX

Videos
Frame
Ana-
lyzed

Flies
Present

Tracks Detected
by FlyTracker

Tracks detected
by CTrax

1 28480 10 10 31

2 31829 15 15 47

3 29105 49 49 850

input feature vectors into some high dimensional feature space

through non-linear mapping [4]. In this space SVM tries to

find the optimal hyperplane to separate the classes. SVM’s

are known to optimally handle the case when the relation

between class labels and attributes is nonlinear. A RBF kernel

was chosen because it has less parameters and provides better

accuracy. The kernel is defined by:

exp(−γ ∗ |u− v|2) (4)

where γ = 1
2σ2 of a Gaussian with variance σ.

The standard library, LIBSVM [3] was used to implement the

classifier. There are two parameters to be estimated for the

classifier, namely the penalty parameter, C and the kernel

parameter, γ. The estimation is accomplished using a grid

search on C and γ using cross-validation. An exponential

growing sequence of pairs of (C,γ) are tried and the one with

the best cross-validation accuracy is picked [3].

V. EXPERIMENTS

A video of 20 interacting flies was recorded using the

FlyWorld [8] for 20 minutes which comprised of approximately

36000 frames. 5 pairwise fly interactions were studied. This

was done because not all flies were active and most of them

either do not get involved in pairwise interactions or they

prefer to remain unsocial. This class of unsocial behaviour was

considered as No Class.

The training data is composed of a set of 2 different pairwise

interaction events. Since the results of FlyTracker [8] are

accurate, we can maintain the identity of all the flies. A set of

fly Ids {5,9} and {7,9} was used as training data. The number

of training events in the training data is 1000.

The testing data is composed of a set of 3 different pairs of

interacting flies. The classifier was never trained on this dataset

and its annotations were used as ground-truth to validate the

results of the classifier.

VI. RESULT

The purpose of this section is twofold: 1) to analyse the

tracking results and compare with the current state of art, Ctrax

[1] and 2) test the performance measure of the classifier.

Videos were analyzed using FlyTracker [8] and Ctrax[9].

Video sequences were recorded with the maximum frame rate

of 30 frames per second, at a resolution of 2.4 pixel/mm. Table

I shows the comparative results of FlyTracker and Ctrax. The

result of the experiments show that FlyTracker is able to track

the flies in low resolution, and gives the correct number of

flies present in the chamber. Various videos were acquired and
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TABLE II
COMPARISON OF HUMAN PERFORMANCE WITH THE CLASSIFIER RESULTS.

Annotator II

Chase Sniff
No
Class

G
ro

u
n
d

tr
u
th

Chase
38 8 5

Sniff
0 6 0

No
Class

0 0
943

Our Method

Chase Sniff
No
Class

G
ro

u
n
d

tr
u
th

Chase
44 7 0

Sniff
4 2 0

No
Class

18 2
923

Annotator II

Chase Sniff
No
Class

G
ro

u
n
d

tr
u
th

Chase
35 0 0

Sniff
11 0 15

No
Class

2 6
931

Our Method

Chase Sniff
No
Class

G
ro

u
n
d

tr
u
th

Chase
20 15 0

Sniff
3 23 0

No
Class

40 7
892

Annotator II

Chase Sniff
No
Class

G
ro

u
n
d

tr
u
th

Chase
47 1 22

Sniff
0 13 18

No
Class

0 8
891

Our Method

Chase Sniff
No
Class

G
ro

u
n
d

tr
u
th

Chase
54 16 0

Sniff
8 22 1

No
Class

12 3
884

analyzed with increasing number of flies and it was found that

FlyTracker could track up to 49 flies.

On the other hand, to test the current state of the art, JAABA

[6], an attempt was made to use it on our data set. Since JAABA

is built on CTrax, there were many events with identity loss and

identity swapping, resulting in tracking errors. Consequently, it

was not possible to manually label and classify a specific pair of

fly behaviour using JAABA, which clearly indicates the limited

use of CTrax and JAABA in a low resolution environment.

For this reason, we applied the classification only on tracking

results obtained by FlyTracker. To test the performance of the

classifier, the ground truth data was compared to the result

of the classifier. A separate comparison was made with a

second expert’s annotation on the same video. This comparison

indicates the difficulty for humans to accurately and precisely

classify certain fly behaviour.

The Table II shows the confusion matrix for three different

pairs of fly behaviour classification. On the left hand, the results

of the human performance are shown, while the tables on the

right side show the classifier performances. The classifier is

able to obtain a maximum overall accuracy of 96.90% with an

average overall accuracy of 95.46% as compared to the average

overall accuracy of 96.8% of human annotations. However, the

overall accuracy is misleading as the classes are unbalanced

(there are far more samples of the No Class than of the social

behaviour classes). To show the complexity of accurately and

TABLE III
AVERAGE (ACROSS THE THREE FLY PAIRS) OF RECALL AND PRECISION(IN

PARENTHESIS) FOR THE BEHAVIOUR CLASSES DEFINED.

Class Human Performance (in %) Our Method (in %)

Chase 80.54(90.97) 73.51(53.73)

Sniff 47.3(33.98) 63.17(41.88)

No Class 99.4(97.86) 97.4(99.92)

Average 75.74(74.27) 78.02(65.17)

precisely annotating a particular behaviour, we need to compare

the recall and precision [11] values for both the methods. If TP
represents the True Positives, FN the False Negatives and FP
the False Positives, then recall and precession is defined as:

Recall =
TP

TP + FN
(5) Precision =

TP

TP + FP
(6)

Table III shows the average (across the three fly pairs) of

recall and precision(in parenthesis) for the behaviour classes

defined. The results indeed highlight the complexity that even

human performance is error prone and does not necessarily

achieve a high success rate. On the other hand results of our

approach are comparable to human performance.

VII. CONCLUSIONS

In this work we have presented an approach for automated

social behaviour recognition of Drosophila Melanogaster(fruit

fly) in low resolution continuous video. The approach is based

on the extraction of temporal and trajectory features of every

pair of flies and classification of 2 classes of social behaviour.

The biological motivation is the study the effect of isolation on

fly behaviour.

The current state of art lacks good tracking results and

provides poor classification on low resolution video. We show

that our tracking results are better than the current state of art

[1]. We proposed a new classification strategy that is able to

classify different types of social behaviour. The performance

of our technique is comparable to how humans would perform.

The proposed classification strategy allows to process multiple

videos in an automated way.

However, there is still room for improvement in classification

results. In the future, we will try to solve the low precision

due to the imbalance in the different classes. We will also try

to define other relevant classes of social behaviour, given the

limitation of low resolution video. A limitation of the current

work is that it is unable to classify higher level complex

behaviours such as wing rowing, copulation, wing extension

etc.
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