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Abstract—Modern techniques rely on convex relaxation to 
derive tractable approximations for rank-sparsity decomposition. 
However, the resultant precision loss usually deteriorates the 
performance in real-world applications. In this paper, we focus 
on the topic of visual saliency detection and consider the inherent 
uncertainty existing in observations, which may originate from 
both low-rank and sparse components. We formulate the rank-
sparsity model with an implicit weighting factor and show that 
this weighting factor characterizes the nature of visual saliency. 
The proposed model is generalized to solve saliency and co-
saliency detection in a unified way. In addition, this model can 
easily incorporate center-prior or other top-down priors and can 
extend to multi-task learning to explore the interrelation between 
multiple features. Experimental results demonstrate that our 
method improves existing rank-sparsity decomposition, and also 
outperforms most state of the arts on two salient object databases. 

Keywords—saliency detection; co-saliency detection; rank-
sparsity decomposition 

I.  INTRODUCTION (HEADING 1) 
Over the last half decade, the increasing popularity of low-

rank matrix recovery shows its significance and provides a 
theoretic foundation for a variety of computer vision tasks. 
Through recent developments, one of the most important 
technical extensions is the rank-sparsity decomposition. With 
the so-called rank-sparsity incoherence [1], one can use convex 
optimization to decompose a corrupted matrix into two 
components: a clean matrix exhibiting low-rank structure and a 
sparse matrix containing gross errors. This decomposition 
scheme inherently characterizes ubiquitous outliers in real-
world data, and thus has been successfully applied to image 
batch alignment [2], key-point detection [3], photometric stereo 
[4], saliency detection [5-7], and so on. Although convex 
relaxation has been popularly adopted to make this 
decomposition problem tractable, it would also lose the 
problem precision. To improve the estimate on rank-sparisty 
decomposition, some research [8] focused on non-convex 
formulation; whereas others [9-10] incorporated application-
dependent regularizers, which are usually non-convex but did 
improve their performance. 

Instead of using relaxation technique in decomposition 
scheme, we aim to balance the tradeoff between problem 
precision and model feasibility so as to tackle real-world 
applications. In this paper, we focus on the topic of visual 
saliency detection. Visual saliency captures the attention of 

human observers and its detection plays a significant role for 
many subsequent vision tasks (e.g., object detection, image 
editing). To date, much research has pointed out that 
computational models can be used to detect image saliency via 
low-level visual cues [11-12]. Existing methods can be 
classified into three categories, which utilize contrast, 
uniqueness, and frequency analysis to measure image saliency. 
Contrast-based methods assumed that image saliency reveals 
high contrast different from their surroundings. Different 
definitions of surround thus relate to local contrast [13-14] or 
global contrast [15-17] based strategies. On the other hand, 
frequency-based methods [18-21] detect image saliency via 
suppressing non-saliency in the log spectrum. The category of 
uniqueness-based methods is the most diverse one but still 
share similar perspective: saliency shows unique and different 
behavior in comparison with non-saliency. Consequently, self-
information [22], graph model [23], incremental coding length 
[24], and patch rarity [25] have been utilized to capture these 
unique pixels. In addition, with the recent advance in rank-
sparsity decomposition, [5-7] proposed to detect the uniqueness 
corresponding to sparse errors in the decomposition model. 
However, because of the convex relaxation technique, their 
methods lost the precision from relaxing sparseness (��-norm) 
to sparse component ( �� -norm) and thus can not explicitly 
determine the saliency score. 

Rather than working on only the low-level saliency, some 
literature integrated top-down information from learning or 
prior knowledge [26-27] to model human perception. For 
example, the co-saliency detection scenario assumes that 
common image saliency exists in both two given images and 
should better reveal salient information than their individually 
detected saliency.  However, to the best of our knowledge, only 
little research [28-29] investigated this issue. A unified solution 
is needed to establish the link from saliency to co-saliency 
detection. In this paper, we first consider the uncertainty of 
observation to reduce the precision loss in existing rank-
sparsity decomposition. By introducing an implicit weighting 
factor, we show that the new model characterizes the nature of 
visual saliency, and solves saliency and co-saliency detection 
in a unified way. The proposed model can effortlessly 
incorporate center-prior or other top-down priors and extend to 
multi-task learning to explore the interrelation between 
multiple features. In the experiments, our method outperforms 
most state of the arts (including the two methods [6-7] which 
are also based on rank-sparsity decomposition). Furthermore, 
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co-saliency information, center-prior, and multi-task learning 
all improve the detection accuracy under our model. 

The rest of this paper is organized as follows. Section II 
briefly reviews relate work and detail our proposed rank-
sparsity decomposition. Section III explains how we apply the 
proposed model to saliency and co-saliency detection. Section 
IV shows the experimental results and comparison with state-
of-the-art methods. Finally, section V gives the conclusion. 

II. IMPLICT RANK-SPARSITY DECOMPOSITION 

A. Notations 
We first summarize the notations used in this paper. Lower 

case letters (�� �� � ) denote scalar, bold lower case letters 
(	� 
� �) denote vector, and bold upper case letters (�� ���) 
denote matrix. � is the ��� element of 	, and ��� and 	� are the ��� ���� element and the ��� column of �, respectively. �����	� 
denotes a diagonal matrix, and �������� denotes the sum of all 
diagonal elements in � . The singular value decomposition 
(SVD) of � is written by ������ . 

The nuclear norm !�!"  is defined by # $��� , where $��� is the ���  largest singular value of �. The ��-norm of � 
indicates the number of nonzero ��� , and !�!� ,!�!%��  are 
defined by # &���&��  and # '# �����%� , respectively. Finally, !�!( is defined by '# �����%�� . 

B. Related Work 
Modern techniques of rank-sparsity decomposition can be 

traced back to Robust Principal Component Analysis (RPCA) 
[30], where the authors first proposed a convex relaxation to 
decompose a corrupted matrix � into a low-rank matrix ) and 
a sparse matrix *: )+� *, - ���.�/0!)!" 1 2!*!�00034 �4 � - ) 1 * .     (1) 

In Equation (1), the authors replaced ��/5�)�  and !*!�  by 
their tightest convex surrogates !)!"  and !*!� , respectively, 
to make the optimization tractable. Many variants of RPCA 
have also been developed to solve different vision/learning 
tasks. For example, the low-rank representation (LRR): 6,� *, - ���.�/0!6!" 1 2!*!%��00034 �4 � - �6 1 * ,   (2) 

which further considers both low-rank subspaces spanned by � 
and sample-specific errors captured by �%��-norm, was recently 
reported for saliency detection [6] and robust clustering [31]. 

Despite the encouraging results of RPCA, researchers still 
seek better solutions to tackle its two major limitations. First, 
the ��-norm would bias the estimates of * when the corrupted 
entries are not sparse and random enough. Second, some 
applications are more concerned with the sparseness of * than 
its exact values. For example, in the foreground detection 
problem [10], because the goal is to locate the foreground but 
not to estimate the foreground itself, the authors proposed to 
incorporate a binary spatial support to measure the sparseness 78��7� and also include spatial coherency as their sparseness 
priors. They model the rank-sparsity decomposition by Markov 
random field (MRF) and solve it by the graph-cut algorithm. 
Although [10] outperforms RPCA on synthetic data and 

foreground detection problem, their formulation may still lose 
the precision on sparseness because they utilizes discrete 
optimization to predict binary supports. From a more general 
perspective, the meaning of sparseness should be related to a 
continuous random variable rather than a discrete label. For 
example, in visual saliency detection, a continuous support 
between 0 and 1 should better explain a local observation with 
respect to its surroundings than a binary value. 

C. Proposed Model 
To reduce the precision loss in sparseness measure, we 

propose a novel implicit rank-sparsity decomposition. We first 
introduce a general form to clarify the relationship between our 
model and existing methods: � - ) 1 * - ) 1 9* 1 �: ; 9�* - )1 9* 1 �: ; 9��� ; )� .      (3) 

Theoretically, RPCA-based methods focus on the modeling of 
Equation (3) when 9 - : , whereas [10] considers the case 
when 9 is either 0 or 1. In contrast, considering the uncertainty 
existing in real-world data, we propose to explicitly include 
this uncertainty by assuming < = 9 = :  in order to achieve 
more accurate decomposition. 

To include the uncertainty into the rank-sparsity 
decomposition, we introduce a weighting factor >, where each 
element  ?��  in > indicate the uncertainty of observation ��� 
originated from both low-rank and sparse components: )+� >+ - ���.�/0@!)!" 1 A# ?���� 1   B # �?�� ; ?C�D�%E���C�D���C�D 1 # �: ; ?������� ; F���%��   000034 �400< = ?�� = :00 . (4) 

In Equation (4), the 2nd term measures the weighted ��-norm 
and the 3rd term encodes the pairwise relation defined 
according to the a priori knowledge about the sparseness. A 
Gaussian noise model ��� - F�� 1 G��, which is defined by the 
4th term, is also included to tackle the noise in real observation. 

III. APPLICATIONS IN VISUAL SALIENCY DETECTION 
Assuming non-salient regions usually share similar visual 

characteristics and salient regions have very different behaviors 
from non-salient regions, one can utilize low-rank and sparse 
properties to characterize non-salient and salient regions, 
respectively. Existing methods [5-7] rely on RPCA-based 
models to estimate the sparse component E and then determine 
the saliency score from E. However, this two-stage processing 
may bias the estimate and thus loses the detection precision. 

In this section, we demonstrate how to apply our implicit 
rank-sparsity model to explicitly estimate the saliency score. 
We will also show that, in addition to the sparseness priors 
defined in Equation (4), our model can easily incorporate other 
priors (e.g., center bias effect, co-saliency information) in a 
unified way and can also extend to multi-task learning. 

A. Saliency Detection 
Our goal is to explicitly estimate the saliency score in 

patch-level. We divide an image into H  non-overlapping 
patches and represent each patch by a I–dimensional feature 
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vector. Let � - J	�� � � 	KL M NCOK denote the feature matrix,  P M NK denote the patch-based support, 	 M NC be the visual 
feature of the ���  patch, and  ?  denotes its corresponding 
saliency score. We formulate the saliency detection problem as )+� PQ - ���.�/0@!)!" 1 A# ? 1  B # �? ; ?��%E���� 1 # �: ; ?�!	 ; R!%   000034 �400< = ? = :00. (5) 

It is worth noting that Equation (5) inherently includes the 
column-wise (i.e., patch-wise) sparsity, which was additionally 
measured by �%��-norm in [6]. The pairwise weight E�� controls 
the sparseness priors and is critical to the performance. Here, 
we consider both feature similarity and spatial coherency 
between two patches to define E��: 

E�� - SEQ��� �T0	 - 5//U	�VW�0	� - 5//�	�<�0000000000000000000000000000000000000000000000W�X��Y�3� ,  and  

EQ�� - Z �[\]^7_`^_a7bc_b d 1 �: ; Z� �[\]^7	`^	a7bc	b d , (6) 

where _  denotes the coordinate of centroid of the  ��� patch, 5//�e� indicates the k nearest neighbor function, and  Z is used 
to balance the impacts between feature similarity and spatial 
coherency (I=8 and Z=0.5 in our experiments). 

Although Equation (5) is non-convex and difficult to solve, 
if we solve either ) or P  with the other one fixed, the two 
corresponding sub-problems are convex and can be solved 
exactly. We thus solve ) and P iteratively until the changes of )  and P  between consecutive iterations are smaller than a 
predefined threshold. Below we detail the optimization. 

1) Optimization of f 
By ignoring those terms independent of ) , we have a 

unconstrained minimization problem: )+ - ���.�/0@!)!" 1 �������� ; )�g�� ; )� � ,  (7) 

where g - �����J: ; ?��� �: ; ?KL �. To make Equation (7) 
tractable, we adopt the linearization technique: 

)+ - ���.�/0@!)!" 1 h% i) ; �)j ; �h k)�)j��i(% ,  (8) 

where )j is the approximation obtained at the previous step, l 
denotes $��g 1 g �, and k)�)j� - m�)j ; ��g. Because g is 
diagonal and its singular values are equal to the diagonal 
elements, 0l  is equal to m ; m?nop  ( ?nop  is the minimum 
element of P). We thus rewrite Equation (8) and have 

)+ - ���.�/0@!)!" 1 h% !) ;q!(% , where 

q - )jUr ; gsV 1 �gs , and  

 gs - gt�: ; ?nop�, r is identity matrix.         (9) 

From [32], the optimum of Equation (9) is derived by SVD 
shrinkage technique: )+ - �q�sq�q  ,                          (10) 

where �sq  denotes the shrunk �q  with all shrunk diagonal 
elements; i.e., .�[0�$�q� ; @tl� <�. 

2) Optimization of u 
By ignoring the terms independent of P , we have a 

constrained minimization problem: PQ - ���.�/0
 P 1 BP vP00034 �4 < = P = :,     (11) 

where 
 - JA ; !	� ; R�!%� � � A ; !	K ; RK!%L , and v  is 
the graph Laplacian matrix defined by w;x  (w  denotes a 
diagonal matrix with y� - # E��� ). Equation (11) is a typical 
quadratic programming. In our experiments, we solve it using 
the Matlab toolbox quadprog(). 

B. Model Extension 
1) Center-prior and beyond 
Top-down semantic information and center-prior have been 

used to facilitate saliency detection [26-27]. Here, we adopt the 
simple center-prior, also called center bias effect, to 
demonstrate how we incorporate other priors into our model. 
The center bias effect assumes that human attention usually 
concentrates on image center and thus would bias the detected 
saliency score. We define an off-center-bias support z M NK by 

{ - : ; �[\0�^!_`^_|!bc_b � ,                       (12) 

where _| is the spatial coordinate of image center. To include 
the center-bias prior, we replace the 2nd term in Equation (5) by A# {? . Then 
 in Equation (11) is accordingly modified as 
 - JA{� ; !	� ; R�!%� � � A{K ; !	K ; RK!%L .   (13) 

If { is small (i.e., the  ��� patch locates close to image center), 
then its sparseness penalty is reduced and this patch is more 
likely to be a salient patch. Our proposed strategy is intuitive 
and simple. One only needs to change the definition of support z to incorporate different prior information. 

2) Multi-task learning 
When considering each type of feature used in saliency 

detection as an individual task, the multi-task learning could be 
used to further improve the detection performance [6]. Assume 
we have � feature types and represent the feature matrix by � -J�� � � � �D L . We extend our method to multi-task framework 
by relaxing the single low-rank model defined in Equation (7) 
into � low-rank models: )�}�� � )D} - ���.�/0# �@!)!" 1 �������� ; )�g�� ; )� �D~� �. (14) 

In Equation (14), each ) is independent of the others and can 
be solved individually. With this relaxation, different types of 
visual features can retain their different low-rank structures 
(which is usually more faithful to real cases) while still sharing 
consistent saliency scores. 

3) Co-Saliency detection 
We extend Equation (5) to tackle the co-saliency detection 

problem. Given two images, we first compute their feature 
matrices �� M NCOK� , 0�% M NCOKb  and estimate the two 
underlying low-rank matrices )��)% and also the concatenated 
support P M NK��Kb by 
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)�}�)%}�PQ - ���.�/0@ # 7)7"~��% 1  

A# ? 1 B # U? ; ?�V%E���� 1  

# �: ; ?�!	� ; R�!%K�~� 1 # �: ; ?�K��!	% ; R%!%Kb~�   34 �400< = ? = :00. (15) 

The major difference lies in sparseness priors term, where both 
intra- and inter-image patch similarity are considered for co-
saliency detection. We rewrite the weight matrix x by: 

x - �x�� x�%x%� x%%� ,                          (16) 

where x%�  is the transpose of x�% , and x��  and x%%  are 
intra-image weight matrices (derived by Equation (6)) of the 
two input images, respectively. To define x�% , we simply 
utilize the feature similarity because now we have no priors 
about their spatial correspondence: 

E���% - ��[\]^7	�̀^	ab7bc	b d
<�000W�X��Y�3� � �T0	� - 5//U	�%V0�/�0	�% - 5//U	�V , (17) 

Note that, in Equation (17), we enforce the knn constraints 
using “and” instead of “or” to alleviate the possible false 
matching. Optimization of Equation (15) is built on the 
technique proposed in Sec. 3-A. We use Equation (9) to update )�� )% , and use Equation (11) to update P . The extended 
formulation in Equation (15) shows that our proposed model 
generalizes both saliency and co-saliency detection. 

C. Implementation Details 
Our method is more sensitive to parameters than RPCA-

based methods because of the non-convex formulation. Similar 
to [10], we propose a content-dependent approach to determine @� A� B . We set @ - $�Ct%����  for different images, and 
adaptively adjust A� B0at each iteration, where A  is set as � 
times of variance of J!	� ; R�!%� � � !	K ; RK!%L  and B -�A . In Sec. IV, we will discuss how to fine-tune the two 
additional parameters �� �. 

IV. EXPERIMENTAL RESULTS 
We compare our method with four recent state-of-the-art 

methods: HC/RC [16], HFT [21], ULRM [7], and MTSP [6]. 
Note that, all of these methods are published after 2011, and 

their reports showed that they outperform most of classic 
algorithms [13-15, 18-20, 22-24]. HC/RC utilizes global 
contrast measure on L*a*b color space and significantly 
outperforms local contrast-based methods. HFT clarifies the 
inappropriateness of spectral residual [18] and accordingly 
improves frequency-based methods. Both ULRM and MTSP 
rely on rank-sparsity decomposition. ULRM uses Equation (1) 
incorporated with segmentation and top-down priors, while 
MTSP uses Equation (2) incorporated with multi-task learning. 
We consider these four methods as the top of contrast-based, 
frequency-based, and uniqueness-based approaches. 

We compare with HC/RC, HFT, and ULRM using their 
released code, and compare with MTSP using our own 
implementation because the code is not available. However, we 
find that the performance of MTSP is not as good as reported 
in [6]. For a fair comparison, we further use the average filter 
to smooth their saliency map for better performance. Finally, in 
the experiment of co-saliency detection, we compare with [28] 
using the author’s released source code. 

A. Datasets and settings 
We conduct saliency detection experiments on the subset of 

MSRA [15] datasets. The MSRA subset is a salient-object 
dataset and contains 1000 images with binary ground truth. In 
addition, we conduct co-saliency detection experiments on the 
co-object dataset [29] containing 204 images with binary 
ground truth. To have a fair comparison with MTSP, we follow 
[6] to first resize each image into size 256x256 and then divide 
it into non-overlapping patches with size 8x8. We also adopt 
the same visual features, including 6 RGB color features, 13 
steerable filter features, and 3 center-surround features, as 
suggested in [6]. Each feature vector 	 M N%% is then obtained 
from averaging all the pixels in the ���  patch. Fig. 1 
demonstrates that the parameters �  and �  controls the 
sparseness and the diversity of saliency scores. According to 
Fig. 1, we use � - <4� and 0� - :<  for both two datasets. 
Finally, six commonly used numerical criteria are adopted for 
performance evaluation: 

� AUC: Area under ROC curve, which is plotted by changing 
thresholds from 0 to 255 to obtain pairs of true positive rate 
(TPR) and false positive rate (FPR). 

� CCs: Correlation coefficients between ground truth and 
saliency map (used in [6]). 

� MAE: Mean absolute error between ground truth and 
saliency map (used in [17]). Note that we divide both the 
ground truth and saliency map by 255 to limit the range of 
MAE between 0 and 1. 

� Precision, Recall, F-measure: Following [15], we use an 
adaptive threshold, which is defined as twice the mean 
saliency, for each image. Using the threshold, we determine 
the precision/recall, and then compute F-measure by 

�-.��3��� - ����4��O����o�o�pO�������4�O����o�o�p�������  . 

B. Results and discussion 
1) Saliency detection 
Table 1 and Fig. 2 show the quantitative and qualitative 

results in MSRA dataset. Our method IRS is superior to MTSP, 

Figure 1: Our detection results using different0� (fixed � - :< in the
lower row) and � (fixed � - <4� in the upper row). 
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competitive with HC and HFT, but inferior to RC and ULRM. 
Note that, the setting of IRS is the same as MTSP (e.g., patch 
size, features). Since MTSP employs the rank-sparsity model 
based on Equation (2), the better performance indicates the 
superiority of our model over RPCA-based methods in saliency 
detection. On the other hand, RC and ULRM outperform our 
method because both of them utilize segmentation techniques. 
In addition, ULRM further includes two priors (color and 
location) while RC uses better discriminative color features 
(L*a*b rather than RGB). Because most salient objects in 
MSRA locate near image center and have discriminative colors, 
we conduct another experiment (denoted by IRSLab-cbias) by 
using only 6 color features obtained from L*a*b color space 
and including the proposed support of center-bias effect. From 
Table 1 and Fig. 2, we achieve the best performance over all 
state of the arts and obtain very consistent results with ground 
truth even without using any segmentation technique. 

It is worth noting that our method tends to obtain smaller 
MAE, which is related to true negative rate (TNR), than all the 
other methods. As pointed in [17], although most approaches 
could produce acceptable saliency maps, they usually fail to 
discriminate non-salient pixels from salient pixels. In contrast, 
our method produces low TNR. This advantage can also be 
observed from Fig. 2, where contrast-based methods tend to 
obtain segment-like results while our method detects fewer 
non-salient pixels. 

2) Co-saliency detection 
We evaluate our co-saliency detection method proposed in 

Sec. 3-B (denoted by CoIRS) and also compare with IRS to 

show the benefits from co-saliency information. In addition, we 
validate their multi-task model extensions (denoted by IRS-MT 
and CoIRS-MT), and compare our results with a histogram-
based co-saliency detection method [28]. 

Table 2 and Fig. 3 give the quantitative and qualitative 
results. In Table 2, CoIRS outperforms IRS, and their multi-
task model extensions further improve the performance. These 
results are expected because now we include cross-image 
information to alleviate misestimates on non-salient regions. 
As shown in Fig. 3, IRS may fail to detect salient objects in 
cluttered background, but CoIRS successfully captures similar 
visual feature existing in both two images. On the other hand, 
[28] relies on histogram updates to capture similar visual cues 
but considers no spatial coherency. Therefore, although the co-
saliency information is used, [28] still detects only small 
amount of co-salient pixels and obtains poor performance. 

V. CONCLUSION 
This paper proposes an implicit rank-sparsity model to 

improve existing rank-sparisty decomposition. Because our 
model considers the uncertainty of real-world observations, 
while applying to visual saliency detection, our method 
characterizes the implicit weighting factor between the 
underlying low-rank and sparse components as the saliency 
score. Because of its generality, we also extend our method to 
co-saliency detection without significant model changes. 
Experiment results demonstrate that the proposed method 
outperforms most state of the arts in two salient-object datasets; 

Figure 2: Some examples in MSRA dataset: (a) original images; (i) ground truth; and the saliency detection results obtained (b) HC; (c) RC; 
(d) HFT; (e) MTSP; (f) ULRM; (g) IRS; (h) IRSLab-cbias. 

TABLE 1: AVERAGE OF SIX PERFORMANCE EVALUATIONS IN MSRA DATASET. 
 HC RC HFT MTSP ULRM IRS IRSLab-cbias 

AUC 0.9257 0.9467 0.9143 0.8702 0.9525 0.9184 0.9706 

CCs 0.7073 0.7846 0.6278 0.5377 0.7695 0.6671 0.8499 

MAE 0.1761 0.2272 0.1858 0.2463 0.2130 0.1354 0.0692 

Precision 0.7418 0.8301 0.6841 0.6013 0.8537 0.6236 0.8246 

Recall 0.7173 0.6034 0.6226 0.4741 0.6613 0.8180 0.8859 

F-measure 0.7071 0.6824 0.6429 0.5257 0.7435 0.6451 0.8260 

(a)             (b)           (c)             (d)            (e)             (f)             (g)            (h)             (i)           (a)      (b)      (c)      (d)     (e)      (f)      (g)     (h)      (i)
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and when using co-saliency information, we can further 
improve the detection performance. 
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(a)                   (b)                   (c)                  (d)                   (e)                               (a)                   (b)                  (c)                   (d)                    (e) 
Figure 3: Some examples in co-object dataset: (a) original images; (e) ground truth; and the saliency detection results obtained by (b) [28];
(c) IRS; (d) CoIRS. The results of IRS-MT and CoIRS-MT are not shown here because they look very similar to (c)-(d). 

TABLE 2: AVERAGE OF SIX PERFORMANCE EVALUATIONS IN CO-OBJECT DATASET. 
 [28] IRS IRS-MT CoIRS CoIRS-MT 

AUC 0.6188 0.8863 0.8911 0.9080 0.9137 
CCs 0.1875 0.6068 0.6136 0.6403 0.6535 

MAE 0.2489 0.2023 0.2039 0.1991 0.1993 
Precision 0.5093 0.6280 0.6285 0.6606 0.6664 

Recall 0.2295 0.6710 0.6763 0.6366 0.6452 
F-measure 0.3621 0.6078 0.6075 0.6064 0.6097 
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