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Abstract—Inspired by the human vision system, in this paper
we propose a specifically organized kind of center-surround con-
trast features and show their suitability for pedestrian detection.
These contrasts are computed from a novel combination of
both local color and gradient statistics aggregated quickly for
arbitrary sized square cells. We exploit our contrast features in
a rich multi-scale and -direction fashion between each central
cell and its neighbors and boost the significant ones for pedes-
trian detection. Experimental results on the INRIA and Caltech
pedestrian datasets show that our method achieves state-of-the-
art performance.

I. INTRODUCTION

Pedestrian detection enjoys increasing popularity in the
computer vision community, since in this area academic in-
terests meet industrial needs. Numerous literature emerged
about the topic (see [1] for a survey), where contributions
are often specialized to some part of the chief aim en-
abling computers to discover pedestrians around, e.g. feature
extraction [2], classifier design [3], or regions of interest
selection [4]. Although significant improvements have been
achieved in the last decade, the detection precision still lies far
behind human vision, which is capable of rapidly localizing
small scale pedestrians even with low contrast and severe
occlusion. Therefore, we are encouraged to look into how
the human visual system processes incoming stimuli and draw
conclusions for the design of our basic features. We believe
that the employment of biologically inspired mechanisms aids
recognition and yields an effective and efficient pedestrian
detector.

Early processing of visual information starts in the human
retinal tissue immediately after light has been transduced
into electric signals by photoreceptive cells. At a first layer
of bipolar cells electrical membrane potentials are locally
aggregated. Grouped bipolar cells report to different types of
ganglion cells, which convert analog potentials into electric
pulse rates. At the transitional synapses between photore-
ceptive and bipolar, but also from bipolar to ganglion cells,
there is a lateral wiring of so called horizontal respectively
amacrine cells modulating the signals to enhance contrasts in a
center-surround fashion. It was found that the output of certain
ganglion cells agree with DoG-filter responses [5] while some
are also oriented and agree with Gabor-filters [6]. A survey
about retinal cell types and wiring is given by [7].

Center-surround mechanisms also affect the later process-
ing in the brain, guiding human attention and thus how we
recognize objects of interest. This psychophysical theory has
been widely used in computational approaches to generate
saliency maps of the environment [8]. However, while attention
is about bottom-up, model-free discovery of the environment,
visual search for specific entities requires top-down saliency,
which tunes the scoring of basic features to the expected
appearance.

Our main contribution in this paper is to design center-
surround contrast features motivated by the human visual
system and boosting them to characterize the appearance of
pedestrians. In order to reduce computational costs when
calculating our features for arbitrary sized local cells, we
combined the fast acquisition of continuous Gaussian feature
distributions from [9] with the integral histograms technique
from [10]. Each cell is represented by one statistical descriptor,
and contrasts are computed between a central cell and its
surrounding neighbors.

Statistical multi-channel cell descriptors: we collect
multi-channel information for each cell area not only w.r.t.
lightness and colors, but also w.r.t. gradients, which both can
complement each other under the challenging variations of
clothing or articulation of the body respectively. In order to
summarize the underlying, unknown distribution of each cell’s
channel values, we fit a normal distribution, which is the
type of continuous distribution with maximum entropy given
a known mean and variance [11].

Multi-direction and -scale contrast vectors: aiming to
incorporate more specific information between central and
surrounding cells, we treat neighbors in different directions
individually, rather than together as a single surrounding
region, thus we obtain multi-direction contrast descriptors; we
compute statistical features at different cell-sizes so as to build
a contrast pyramid, which is in accordance with the general
architecture of most visual saliency systems.

We evaluate our approach in extensive experiments on
several benchmark datasets and demonstrate that by employing
our novel center-surround contrast features, our pedestrian
detector achieves state-of-the-art performance.
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Fig. 1: Flow chart of our feature extraction procedure.

II. RELATED WORK

Since we employ center-surround human visual attention
mechanism to design features for pedestrian detection, we
concentrate our review in the above two fields respectively.

A. Features for pedestrian detection

In the field of pedestrian detection, almost all kinds of
features are extracted by fusing local or global differences in
various forms, except those who used intensity or color values
directly. Those difference based features can be categorized
into two classes: pixel-wise and patch-wise, according to how
the differences are computed.

Gradients are a kind of basic pixel-wise local difference,
on which the arguably most popular features Histograms of
Oriented Gradients (HOGs) [12] for pedestrian detection are
built; Local Binary Pattern (LBP) features [13] incorporated
the relationships between neighboring pixels by binary codes,
and were combined with HOG features by Wang et al. [14] in
order to cope with occlusions.

On contrast, Haar-like features [15] are considered as
patch-wise local differences, as they compute abstraction of
sums over rectangular regions. Viola and Jones [16] used
Haar-like features on both intensity and motion information
for pedestrian detection; Walk et al. [2] proposed Color Self
Similarity (CSS) features to describe global difference between
each cell pair on color histograms; Zhang et al. [17] designed
informed Haar-like features based on the prior shape of up-
right human body.

Montabone et al. [18] proposed new features derived from
a visual saliency mechanism, which computed differences
between central and surrounding regions. Those features are
most relevant to ours, but we extend their work in three
aspects: we compute the center-surround contrast in multiple
channels (not only colors but also gradients); we fit a normal
distribution for each cell’s channel values; we compute the
directional contrasts between the central and eight nearest
surrounding regions individually, so as to incorporate more
detailed information regarding local difference.

B. Center-surround contrast measurements

Most computational visual attention approaches determine
the center-surround contrast by DoG-filters or approximations
of these [19]. Recently, some researchers represented the cen-
tral and surrounding areas by feature distributions to capture
more information about the areas. The distributions were in
either discrete forms, e.g. histograms [20] or continuous forms,
e.g. normal distributions [9]. Various distance measurements
can be computed between central and surrounding distributions
to describe the local contrast.

III. CENTER-SURROUND CONTRAST FEATURES

The flow chart of our feature extraction is illustrated in
Fig. 1. First, we compute multiple channels for each pixel
all over the image, to integrate both color and gradient infor-
mation; second, we divide the whole image into square cells
with a fixed size and fit a normal distribution for each cell’s
channel values; third, we define the neighborhood for each cell,
and compute the differences between one central cell and its
neighboring cells, respectively; finally, we repeat the second
and third step at several scales with different cell sizes, yielding
a multi-scale, multi-direction and multi-channel contrast vector
for the whole image.

A. Statistical multi-channel cell descriptors

We consider a total of 10 different channels: 3 channels for
LUV colors, 1 channel for gradient magnitude information, and
6 channels for histograms of oriented gradients. Note that all
the above channels are computed pixel by pixel. Histograms of
oriented gradients are usually computed for a group of pixels
inside some region, but we do it for each pixel, which means
we simply quantize the gradient magnitudes into orientation
bins. For each pixel, two neighboring bins are filled as we
employ bilinear interpolation w.r.t. orientation bins.

In order to remove noises, before channel computation,
input images are smoothed with a binomial filter of radius 1,
i.e. σ ≈ 0.87. Note that we explicitly do not smooth channel
data as we observed this to lead to a decrease in performance,
as it seems to inhibit characteristic local variations.

We fit a normal distribution to summarize the distribution
of each cell’s channel values. Assume that we have channel
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(a) Sparse map (b) Dense map

Fig. 2: Two structures of neighborhood maps. Each red arrow
points from the central cell to its neighboring cells.

values for the whole input image along channel i, denoting as a
channel image P i, and one cell c with its channel vector P i

c =
[vi1, v

i
2, ..., v

i
p] along channel i, we implement ML-estimation

of normal distribution for P i
c :

μ̂i
c =

1

p

p∑
k=1

vik = P i
c , (1)

and

Σ̂i
c =

1

p

p∑
k=1

(vik − P i
c)
2 = (P i

c)
2 − P i

c

2
. (2)

Now the estimation is narrowed down to compute two local
averages: P i

c and (P i
c)
2 according to Eq. 1 and Eq. 2. For

efficiency, along each channel, we employ two integral images:
one for the original channel image P i; another one for the
squared channel image (P i)2. The two integral images avoid
exhaustive summing up of channel values inside each cell.

B. Multi-direction and multi-scale contrast vectors

To more accurately describe how the central cell differs
from its neighbors, we treat its neighboring cells in different
directions individually, rather than together as a single region.
Therefore, we compute the contrast between the central cell
and each neighboring cell respectively, to yield a multi-
direction contrast vector, which integrates the differences in
multiple directions.

The first issue comes to defining neighbors for each cell to
form center-surround cell pairs. One simple way is to find the
8 nearest neighbors for each cell, but then redundancy emerge
significantly, as each neighboring relationship is counted for
twice. To get rid of this redundancy, we propose two neigh-
borhood structures: sparse and dense neighborhood maps, as
shown in Fig. 2. The sparse map is generated using the simple
8 nearest neighbors principle but with a step size of two cells
instead of one; the dense map is generated through finding
only 4 out of 8 nearest neighbors for each cell, as shown in
Fig. 2b. The advantage of the dense map is that it is capable
of bridging each cell with its 8 nearest neighbors, except those
cells along the image borders, without any redundancy.

We introduce two different contrast measurements to com-
pute the difference between each two cells’ channel values,
denoted as P i

c and P i
s for the central and its surrounding cell

along channel i, respectively. We compare the results of the
two measurements in Sec. V.

W2 distance

The W2 distance (2nd Wasserstein distance) was first
introduced as a measurement for center-surround contrast by
Klein et al. [9] and achieved reasonable results for saliency
detection. Its definition in our case can be written as:

W2(P
i
c , P

i
s) =

[
inf

γ∈Γ(P i
c ,P

i
s)

∫
R×R

|x− y|2 d γ(x, y)
] 1

2

, (3)

with Γ(P i
c , P

i
s) denoting the set of all couplings of P i

c and
P i
s meets this requirements, if the underlying feature space is

defined reasonably.

It would be intractable to compute the integral in Eq. 3
in case of arbitrary distributions. Fortunately, it can be solved
algebraically for normal distributions, as established by Givens
and Shortt [21]. The contrast vector between one central cell
distribution P i

c and its neighboring cell distribution P i
s along

channel i can be computed in a closed form as follows:

W2(P
i
c , P

i
s) =

[
||μi

c − μi
c||22 +Σi

c +Σi
s − 2

√
Σi

cΣ
i
s

] 1
2

. (4)

Gradient matrix

For each center-surround cell pair, we compute the gradient
matrix for the mean and variance vector (μi,Σi), resulting in
a contrast vector. The contrast vector between one central cell
distribution P i

c and its neighboring cell distribution P i
s along

channel i can be expressed as follows:

�cst(P i
c , P

i
s) =

(
μi
c − μi

s,Σ
i
c − Σi

s

)
. (5)

In the feature space, the contrast vector in Eq. 5 is treated
as two separate values, which enables convinent training
procedure.

In accordance with the general architecture of most visual
saliency systems, we build a multi-scale contrast pyramid by
varying the cell size at each scale. The final contrast feature
space for the whole image consists of all the contrast values
from each cell at each scale and along multiple channels.

IV. FEATURE SELECTION FOR PEDESTRIAN DETECTION

For baseline comparison, we consider [ChnFtrs] [22] which
reaches state-of-the-art performance and, in addition, is fast to
train and test. It first computes multiple channel information
for an image and then considers sums over rectangular channel
regions as features which can be computed very efficiently
when using integral images.

Our own detector employs the center-surround contrast
features proposed in Sec. III. Note that these features, too, are
built on channel features but interpret local differences between
central rectangular regions and their eight nearest neighboring
regions over multiple channels rather than over channel values
themselves.
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Fig. 3: Illustration of representative features. (a) Body parts
weight map: different colors are used to indicate the accumu-
lative weight of each pixel after boosting. (b) Channel weight
bars: accumulative weight of each channel are indicated by
one bar (best viewed in color).

We apply a fast version of AdaBoost [23] for feature
selection since it offers a convenient and fast approach to
select from a large number of candidate features. We choose
decision trees of depth 2 as our weak classifiers and build our
final strong classifier with 4096 weak classifiers in total. Initial
negative training samples are randomly generated from natural
images that do not contain pedestrians and, afterwards, hard
negative samples are searched for three rounds over all negative
sample images so as to collect 20,000 negative samples in
total. This multi-round training strategy is pivotal as it leads
to a better performance than a simple one round training
procedure with the same number of negative samples. From
our experiments, three rounds of retraining were observed to
yield optimal performance; additional rounds did not show
significant improvements.

In order to look into which features are more informative,
we observe in terms of: body parts and channels. First, we
collect the weights of the top 1000 features. Then we add
the weight of each feature to the pixels it covers, including
those inside the central and surrounding cells, and use different
colors to indicate the accumulative weight of each cell after
boosting as shown in Fig. 3a. As expected, the head-shoulder
and feet area of the human body show to be more discrimina-
tive for pedestrian detection than other body parts. Moreover,
we also add the weight of each feature to the channels it goes
through to observe which channels are more representative and
use bars to illustrate the accumulative weight of each channel
as shown in Fig. 3b. We find that all the channels we choose
contribute relatively even to the final classifier, indicating no
redundancy in channels.

The most discriminative features determined by the boost-
ing algorithm are then used for pedestrian detection in still
images. To this end, we slide a window over the whole image
and consider multiple scales. The spatial step size is set to be
half of the smallest cell size according to the Nyquist-Shannon
sampling theorem, and the scale step is set to be 2

1
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22.18% ChnFtrs
19.14% W2 + sparse
18.24% W2 + dense
16.64% L1 + sparse
16.19% L1 + dense

Fig. 4: Results on INRIA dataset under different configura-
tions.

there are 8 scales in each octave. Finally, we use a simplified
non-maximal suppression (NMS) procedure [22] to suppress
nearby detections.

V. EXPERIMENTS

We conducted experiments on two public benchmark
datasets: the INRIA pedestrian dataset [12] and the Caltech
pedestrian dataset [1]. The INRIA data is arguably the most
popular dataset for people detection and comes along with pre-
defined subsets for training and testing. The Caltech data is the
largest and most challenging dataset for pedestrian detection
and we consider subsets set00 - set05 for training and subsets
set06 - set10 for testing.

A. Discussions on configurations

We proposed two neighborhood structures and two distance
measurements in Sec. III. Experimental results on the INRIA
dataset under different configurations are shown in Fig. 4.

We find that the results under different configurations
are similar to each other, which indicates that our feature
extraction scheme is robust. Still, W2 distance leads to a
little worse results than gradient matrix because the latter one
incorporates more specific differences on mean and variance
values separately, yielding a higher dimensional feature space;
sparse neighborhood structure results in better results on both
contrast measurements, due to richer neighboring differences
integrated.

B. Comparisons with state-of-the-art detectors

In this section, we compare our detector to other state-of-
the-art detectors whose results are publicly available1. Notably,
some detectors are not considered here because of use of mo-
tion information or semantic analysis of scene which requires
elaborate preprocessing.

1http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/

2296



10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

 

 

81.70% Shapelet
72.48% VJ
45.98% HOG
39.10% HogLbp
24.74% MultiFtr+CSS
22.18% ChnFtrs
19.96% LatSvm−V2
16.19% ours
13.53% Roerei
13.32% SketchTokens

(a) INRIA

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

 

 

94.73% VJ
68.46% HOG
67.77% HogLbp
66.76% AFS+Geo
63.26% LatSvm−V2
60.89% MultiFtr+CSS
60.16% FeatSynth
56.34% ChnFtrs
53.14% DBN−Isol
48.45% MultiResC
48.35% Roerei
48.22% DBN−Mut
41.58% ours

(b) Caltech test

Fig. 5: Results of different detectors on different datasets under
standard evaluation settings (best viewed in color).

We use the same experimental protocol as in [1]: first, the
overall results are produced on the reasonable subset of each
test set which shows pedestrians at a resolution of over 50
pixels in height and a visibility of at least 65%; second, one
ground truth annotation and one detection bounding box are
considered to be matched if and only if their overlap region
exceed 50% of their union region.

To compare the performance of state-of-the-art detectors,
we plot miss rate against false positives per image (FPPI)
curves in logarithmic scales by varying the threshold on the
detection confidence. To summarize the overall performances
of different detectors, a numerical measurement of average
miss rate is computed by averaging the miss rates at nine FPPI

rates evenly sampled in log-space in the range of [10−2, 100].

Our pedestrian model is of 96 × 48 pixels, while our
detection window is of 120 × 60 pixels, including borders
of 6 pixels on the left and right, and 12 pixels on the top
and bottom as context. In this section, we use the following
configurations for the experiments: three scales with cell sizes
of 3× 3, 4× 4 and 6× 6 pixels; dense map; gradient matrix
contrast measurement.

The results on the INRIA dataset in Fig. 5a show that
our detector outperforms the baseline detector [ChnFtrs] by
about 6% and reaches the state-of-the-art performance; on
the Caltech pedestrian dataset, our detector outperforms not
only the baseline detector [ChnFtrs] by about 15% but also
yields the overall best performance as shown in Fig. 5b. More
extensive comparisons are shown in Tab. I.

VI. CONCLUSION

Humans are able to efficiently locate what they are looking
for, because characteristic visual features are tuned so that
those entities become salient. This is called top-down saliency
or visual search. We tried to mimic early human visual
processing by local distribution contrast features and boosted
them to respond to the appearance of pedestrians, so we would
call our detector a computational top-down saliency system.
Our features are very efficient to compute combining a fast
integral method for local averaging and clever arrangement
of additional image layers for quick maximum likelihood
estimates of normal distributions. We tested different patterns
for organizing the center-surround structure as well as different
ways to estimate the cell-contrasts.

Experimental results showed that our detector achieves
state-of-the-art performance on the INRIA pedestrian dataset
and, for the Caltech pedestrian dataset, we found it to outper-
form all other recent approaches considered.

Given these results, it appears promising to further explore
feature design driven by human visual mechanisms. Immediate
extensions of the approach presented in this paper could be
to incorporate information from additional modalities such as
motion and depth.

REFERENCES

[1] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
an evaluation of the state of the art,” IEEE Trans. PAMI, vol. 34, no. 4,
pp. 743–761, 2011. 1, 4, 5

[2] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New features and
insights for pedestrian detection,” in CVPR, 2010. 1, 2, 6

[3] S. Maji, A. C. Berg, and J. Malik, “Classification using intersection
kernel support vector machines is efficient,” in CVPR, 2008. 1, 6

[4] S. Zhang, C. Bauckhage, D. Klein, and A. Cremers, “Moving pedestrian
detection based on motion segmentation,” in IEEE Workshop on Robot
Vision (WoRV), 2013. 1

[5] R. W. Rodieck, “Quantitative analysis of cat retinal ganglion cell
response to visual stimuli,” Vision Research, vol. 5, no. 12, pp. 583–601,
Dec 1965. 1

[6] J. P. Jones and L. A. Palmer, “An evaluation of the two-dimensional
gabor filter model of simple receptive fields in cat striate cortex,”
Journal of Neurophysiology, vol. 58, no. 6, pp. 1233–1258, Dec 1987.
1

[7] B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and
primate vision,” Progress in Retinal and Eye Research, vol. 29, no. 6,
pp. 622–639, Nov 2010. 1

2297



Detector Features Classifier Average miss rate
INRIA Caltech

VJ[24] Haar AdaBoost 72.48% 94.73%
HOG[12] HOG linear SVM 45.98% 68.46%
Shapelet[25] gradients AdaBoost 81.70% 91.37%
MultiFtr+CSS [2] HOG + CSS AdaBoost 24.74% 60.89%
HikSvm [3] HOG HIK SVM 42.82% 73.39%
HogLbp [14] HOG + LBP linear SVM 39.10% 67.77%
LatSvm-V1 [26] HOG latent SVM 43.83% 79.78%
LatSvm-V2 [27] HOG latent SVM 19.96% 63.26%
ChnFtrs [22] channels AdaBoost 22.18% 56.34%
FeatSynth [28] HOG + texture linear SVM 30.88% 60.16%
MultiResC [29] HOG latent SVM / 48.45%
CrossTalk [30] channels AdaBoost 18.98% 53.88%
VeryFast [31] channels AdaBoost 15.96% /
SketchTokens [32] channels AdaBoost 13.32% /
Roerei [33] channels AdaBoost 13.53% 48.35%
AFS+Geo [34] HOG + texture linear SVM / 66.76%
DBN-Isol [35] HOG DeepNet / 53.14%
DBN-Mut [36] HOG DeepNet / 48.22%

ours center-surround contrast AdaBoost 16.19% 41.58%

TABLE I: Performance comparisons for state-of-the-art pedestrian detectors. Each row in this table summarizes information as to
features and classifiers used in a particular approach, and displays the corresponding average performance in terms of miss rates.
The approach proposed in this paper yields state-of-the-art performance on the INRIA dataset and consistently better results than
previously reported on the Caltech dataset.

[8] S. Frintrop, E. Rome, and C. H. I., “Computational Visual Attention
Systems and their Cognitive Foundation: A Survey,” ACM Trans. on
Applied Perception, vol. 7, no. 1, 2010. 1

[9] D.A. Klein and S. Frintrop, “Salient Pattern Detection using W2 on
Multivariate Normal Distributions,” in DAGM, 2012. 1, 2, 3

[10] F. Porikli, “Integral histogram: A fast way to extract histograms in
Cartesian spaces.” in Proc. of CVPR, 2005. 1

[11] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Wiley, Sep 2006. 1

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005. 2, 4, 6

[13] T. Ojala, M. Pietikinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996. 2

[14] X. Wang and T. X. Han, “An HOG-LBP human detector with partial
occlusion handling,” in ICCV, 2009. 2, 6

[15] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in CVPR, 2001. 2

[16] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns
of motion and appearance,” Int. J. of CV, vol. 63, no. 2, pp. 153–161,
2005. 2

[17] S. Zhang, C. Bauckhage, and A. B. Cremers, “Informed haar-like
features improve pedestrian detection,” in CVPR, 2014. 2

[18] S. Montabone and A. Soto, “Human detection using a mobile platform
and novel features derived from a visual saliency mechanism,” Image
and Vision Computing, vol. 28, no. 3, pp. 391–402, 2010. 2

[19] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Trans. PAMI, vol. 20, no. 11,
pp. 1254–1259, 1998. 2

[20] D. Klein and S. Frintrop, “Center-surround divergence of feature
statistics for salient object detection,” in ICCV, 2011. 2

[21] C. Givens and R. Shortt, “A class of wasserstein metrics for probability
distributions,” Michigan Math. J., vol. 2, no. 31, 1984. 3

[22] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,”
in BMVC, 2009. 3, 4, 6

[23] R. Appel, T. Fuchs, P. Dollár, and P. Perona, “Quickly boosting decision
trees-pruning underachieving features early,” in ICML, 2013. 4

[24] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. of
CV, vol. 57, no. 2, pp. 137–154, 2004. 6

[25] P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning
shapelet features,” in CVPR, 2007. 6

[26] P. F. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” in CVPR, 2008. 6

[27] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Trans. PAMI, vol. 32, no. 9, pp. 1627–1645, 2010. 6

[28] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg, “Part-based feature
synthesis for human detection,” in ECCV, 2010. 6

[29] D. Park, D. Ramanan, and C. Fowlkes, “Multiresolution models for
object detection,” in ECCV, 2010. 6

[30] P. Dollár, R. Appel, and W. Kienzle, “Crosstalk cascades for frame-rate
pedestrian detection,” in CVPR, 2012. 6

[31] R. Benenson, M. Mathias, R. Timofte, and L. V. Gool, “Pedestrian
detection at 100 frames per second,” in CVPR, 2012. 6

[32] J. J. Lim, C. L. Zitnick, and P. Dollár, “Sketch tokens: a learned mid-
level representation for contour and object detection,” in CVPR, 2013.
6

[33] R. Benenson, M. Mathias, T. Tuytelaars, and L. V. Gool, “Seeking the
strongest rigid detector,” in CVPR, 2013. 6

[34] D. Levi, S. Silberstein, and A. Bar-Hillel, “Fast multiple-part based
object detection using kd-ferns,” in CVPR, 2013. 6

[35] W. Ouyang and X. Wang, “A discriminative deep model for pedestrian
detection with occlusion handling,” in CVPR, 2012. 6

[36] W. Ouyang, X. Zeng, and X. Wang, “Modeling mutual visibility
relationship with a deep model in pedestrian detection,” in CVPR, 2013.
6

2298


