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Abstract—We present a scheme for recovering the orientation
of a planar scene from a single translationally-motion blurred
image. By leveraging the homography relationship among image
coordinates of 3D points lying on a plane, and by exploiting
natural correspondences among the extremities of the blur ker-
nels derived from the motion blurred observation, the proposed
method can accurately infer the normal of the planar surface.
We validate our approach on synthetic as well as real planar
scenes.

I. INTRODUCTION

An extensively researched area in computer vision is the
recovery of 3D structure from image intensities. Well-known
cues for depth recovery include disparity [1], optical flow [2],
texture [3], [4], [5], shading [6], [7], defocus blur [8] and
motion blur [9], [10], [11], [12], to name a few. While esti-
mation of 3D depth/shape has been of general interest, there
have also been works targeting the special case of inferring
planar 3D geometry (such as the Manhattan model). This is
due to the fact that the world around us can, in many cases,
be modeled as being piecewise planar. Approximating a 3D
scene with planes (where possible) has tremendous advantage
in terms of reducing the computational complexity. Estimation
of surface normals of a scene/object plays a crucial role in
identifying the 3D geometry/shape of that scene/object. The
elegant homography relationship between two images (original
and transformed due to relative motion between camera and
scene) holds for scene points lying on a plane in the 3D world.

Estimating a plane involves finding its surface normal and
the perpendicular distance from the center of the camera to
the plane. The relevance of this problem is evident from
the many works that exist in the literature. Brown et al. [5]
assume textural isotropy and use the foreshortening of texture
due to an inclined plane as a cue to estimate the orientation
of the plane. Super et al. [3], [4] assume a homogeneously
textured input image and use the local variations of spatial
frequencies to compute the orientaion of the planar surface.
Clark et al. [14] implemented a technique to recover the
orientation of text planes using perspective geometry. In [13],
Farid et al. reveal the fact that the projection of a planar texture
having random phase leads to higher-order correlations in the
frequency domain, and these correlations are proportional to
the orientaion of the plane. Greinera et al. [15] have proposed
a method to determine the surface normal using projective
geometry and spectral analysis. Hwa et al. [1] discuss a method
to estimate depth information using disparity obtained from

stereo images. Behzad et al. [2] have developed a technique
to estimate depth information from optical flow. Haines et al.
[16] describe a technique that makes use of prior training data
gathered in an urban environment to classify planar/non-planar
surfaces and to compute the orientaion of the planes.

We propose to use motion blur as a cue to estimate the
orientation of a planar scene given a single motion blurred
image of the plane. Fig. 1 depicts an example in which the
surface normal of the plane is rotated 30 degrees with respect
to the optical axis. Note that the degree of blur in the left-
half of the image is higher as compared to the right-half
of the plane. Usually, blurring is considered as a nuisance
whose effect needs to be removed. However, works do exist
that, in fact, use blur (optical/motion) as a cue to infer
valuable information such as the depth of the scene and relative
motion of the camera with respect to the scene. In [9], an
unblurred-blurred image pair was used to estimate depth from
a translationally blurred image. Sorel et al. [17] derive the
relationship among point spread functions (PSFs) at different
depths and use it to restore space-variantly blurred images.
Xu et al. in [18] used a motion blurred stereo-pair to estimate
depth information which is subsequently used for space-variant
deblurring. Lin et al [10] describe a method to estimate depth
from a single motion blurred image. They assume the scene
to consist of a single fronto-parallel plane and calculate the
distance of the plane from the camera. Zheng et al. [12] have
recently proposed a method to estimate depth from a single
motion blurred image but it is designed specifically for low-
light conditions.

Fig. 1. A motion blurred inclined plane.

To the best of our knowledge, the only method to estimate
plane orientation using blur as a cue is the recent work by
McCloskey et al. [19] who have proposed a method based
on blur gradients to evaluate the planar orientaion (slant and
tilt angles) from a single image using optical blur as a cue.
They exploit the relationship between blur variations for the
equifocal (fronto-parallel scene) plane and a plane’s tilt and

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.364

2089



slant angles. For a fronto-parallel scene, all the pixels in the
image have the same amount of blur. In the case of an inclined
plane, the amount of blur varies inversely with depth. The user
has to manually mark a patch of interest for which slant and
tilt angles are estimated. Their work assumes a homogeneously
textured observation.

In this paper, we propose an interesting approach (a first
of its kind) to determine the surface normal of a plane from
a single motion-blurred image. We exploit the homography
relation that exists in the image domain under camera motion
to determine the surface normal. For a planar scene, the blurred
image can be represented as a weighted average of warped
versions of the unblurred image. This representation helps in
characterizing the space-variant blur by a set of global homo-
graphies. We extract patches from the image and estimate blur
kernels at these patches. Using the correspondences among the
extremities of blur kernels at different locations, we set up a
system of linear equations that are solved to yield the surface
normal.

The paper is organized as follows. In section II, we describe
motion blur model for planar scenes. In section III, we discuss
the proposed method to estimate the surface normal from
point correspondences across blur kernels. In section IV, we
validate our approach on several synthetic and real examples,
and conclude with section V.

II. PLANAR MOTION BLUR

Motion blur in an image is due to relative motion between
camera and scene during exposure time. Since the camera
sensor sees different scene points at different instants of time
within the exposure window, these intensities get averaged re-
sulting in a blurred image. Let g be the blurred image captured
by a camera with exposure time Et, and let f be the original
image (without camera shake). During the exposure time, f
may have undergone a set of transformations due to relative
motion between the camera and the scene. The transformed
image at time instant τ can be explained using homography Hτ

as gτ (Hτ (x)) = f(x) where x represents pixel coordinates.
Therefore, the blurred image can be modeled as the average of
transformed versions of f during the exposure time Et. The
blurred image intensity at a location x can then be expressed
as

g(x) =
1

Et

∫ Et

0

f(H−1
τ (x)) dτ

The homography relation in the image domain holds only for
the set of scene points lying on a plane. The homography

at time instant τ is given by Hτ = K
(
Rτ + tτ

nT

d

)
K−1

where K =

[
q 0 0
0 q 0
0 0 1

]
, with q being the focal length of the

camera. Here Rτ denotes the rotation matrix at time instant
τ and is a combination of the rotational matrices about the
X,Y and Z axes, and d is the perpendicular distance from
the center of the camera to the plane and is a constant for
the entire plane. Here, tτ = [TXτ

TYτ
TZτ

]T represents the 3D
translation vector at time τ and n = [NX NY NZ ]

T denotes
the surface normal of the planar scene. Following [11], [17], in
our analysis, we assume that the motion blur is due to camera

translations only. Therefore, Rτ is a 3× 3 identity matrix (I)
and the homography simplifies to

Hτ = K

(
I + tτ

nT

d

)
K−1. (1)

III. NORMAL FROM POINT-CORRESPONDENCES

The aim of our work is to use a single motion blurred
image to estimate the surface normal of a planar scene. It is
straightforward to show that the blur kernel centered at location
x can be written as

h(x,u) =
1

Et

∫ Et

0

δ(u− (Hτ (x)− x)) dτ (2)

i.e., the PSF represents the displacements undergone by an
image point due to a set of motion transformations. The
blur kernel induced will ideally consist of impulses at the
corresponding shifts, and the weight of the impulse will
be governed by the fraction of the exposure time spent in
that homography/pose. For a fronto-parallel scene i.e., when
n = [0 0 1]T , the blur induced would be space-invariant when
camera undergoes only in-plane translations in the xy−plane.
This is because for some transformation t = [TXτ TYτ 0]T

and n = [0 0 1]T , we obtain[
xτ

yτ
1

]
=

⎡
⎣ 1 0

qTXτ

d

0 1
qTYτ

d
0 0 1

⎤
⎦
[

x
y
1

]
(3)

Clearly, the displacements in x and y directions are a constant

(independent of the spatial location) and equal
qTXτ

d and
qTYτ

d ,
respectively. However, for a general inclined plane, the blur
induced would be space-variant (due to change in depth of
the scene) even for pure in-plane translational motion. Corre-
sponding to this situation, we will have (for t = [TXτ

TYτ
0]T )

[
xτ

yτ
1

]
=

⎡
⎣ 1 +NX

TXτ

d NY
TXτ

d qNZ
TXτ

d

NY
TYτ

d 1 +NY
TYτ

d qNZ
TYτ

d
0 0 1

⎤
⎦
[

x
y
1

]

(4)

Note that the displacements along x and y are no longer a
constant and, in fact, vary as a function of the spatial location
of the image point. Since our interest is in estimating the
surface normal n = [NX NY NZ ]

T (and not the camera
motion per se), we rewrite equation (4) as

[ xτ ] = [ x y 1 ]

⎡
⎢⎣ 1 +NX

TXτ

d

NY
TXτ

d

qNZ
TXτ

d

⎤
⎥⎦ (5)

and

[ yτ ] = [ x y 1 ]

⎡
⎢⎣ NX

TYτ

d

1 +NY
TYτ

d

qNZ
TYτ

d

⎤
⎥⎦ (6)

In equations (5) and (6), assuming point correspondences
between (x, y) and (xτ , yτ ) to be known, the unknowns
are NX , NY , NZ , TXτ

, TYτ
and d, and these appear in the

right-most column vector. Note that the ratio
TXτ

d (or
TYτ

d )
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is a common scale factor multiplying the normal and hence
need not be estimated. At first glance, it might appear that one
can enforce unit norm on the normal to reduce the unknowns
by one. However, we refrain from doing so since we lose the
elegance of the linear equations (5) and (6) in the process.
Thus, there are effectively three unknowns (NX , NY , NZ)
that are to be estimated. Hence, we need at least three point
correspondences to solve this problem. If we can find point
displacements at other locations in the image corresponding
to the same motion [TXτ

TYτ
0]T , then it should theoretically

be possible to determine the unknowns. This, in fact, forms
the basic premise for our method.

As discussed earlier in equation (2), the PSF or blur
kernel encapsulates the displacements of pixels under the
influence of camera motion. Thus, if we can establish point-
correspondences (all influenced by the same motion) across
atleast three blur kernels, then we can solve for the surface
normal. However, because the blur kernel estimation itself is
prone to small errors, it is only prudent that we use as many
correspondences as possible. Note that we need to identify
corresponding points among the PSFs with respect to the same
homography. On this issue, we wish to point out an interesting
fact that a natural correspondence exists among the extremities
of blur kernels (i.e., non-zero impulses at maximum distance
from the origin of the PSF and on either side of the origin)
across the image. We could potentially use the left (or right)
extremity of the blur kernel in equation (5) or (6). Although it
might appear that one can then solve for the normal, there is
an ambiguity issue which we wish to highlight. Since the blur
kernels are estimated independently across the image, there
is a possibility of incurring spatial shifts in the PSFs when
employing any blind deblurring method. A blurred patch b
can be represented as convolution of latent patch l and blur
kernel h i.e., b = l∗h. Note that a shifted version (translational
shift along x and y directions) of the true h also satisfies the
convolution relation because b(x) = l(x− s0) ∗ h(x+ s0).
The shift introduced in the blur kernel is equivalently com-
pensated in the latent image. Hence, if we choose only one
extremity from the blur kernels, the surface normal cannot
be estimated correctly due to possible misalignment errors.
In order to resolve this issue, we choose the displacement
between the extremities for computing correspondenes since
this displacement is independent of any shift in the blur kernel.

From equation (5), the extremity of a PSF (say h1) due to
translation (say TXp ) can be expressed as

[ xl1 ] = [ x1 y1 1 ]

⎡
⎢⎣ 1 +NX

TXp

d

NY
TXp

d

qNZ
TXp

d

⎤
⎥⎦ (7)

where (x1 y1) is the spatial-location of the origin of h1.
Similarly, the x−coordinate of the right-extreme point of h1

due to another translation (say TXq
) will be

[ xr1 ] = [ x1 y1 1 ]

⎡
⎢⎣ 1 +NX

TXq

d

NY
TXq

d

qNZ
TXq

d

⎤
⎥⎦ (8)

Subtracting equation (7) from equation (8), we get

[ x�1 ] = [ x1 y1 1 ]

⎡
⎢⎣ NX

TXq−TXp

d

NY
TXq−TXp

d

qNZ
TXq−TXp

d

⎤
⎥⎦ (9)

where x�1
indicates the difference between the x−coordinates

of the two extreme points of the blur kernel h1. If we can
determine M such PSFs in the given blurred image, then we
have a set of M (≥ 3) linear equations given by⎡
⎢⎢⎢⎣

x�1

x�2

.

.
x�M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1 y1 1
x2 y2 1
. . 1
. . 1

xM yM 1

⎤
⎥⎥⎥⎦
⎡
⎢⎣ NX

TXq−TXp

d

NY
TXq−TXp

d

qNZ
TXq−TXp

d

⎤
⎥⎦ (10)

where (xi yi) represents the spatial-location of the origin of the

ith PSF. Note that
TXq−TXp

d is a constant that multiplies every
component of n and hence need not be estimated. Therefore,
one can solve equation (10) using least-squares to infer the
surface normal.

(a) (b)

Fig. 2. (a) Motion blurred planar scene. (b) PSFs at different locations of
(a).

The procedure explained above, in fact, is equally appli-
cable to extreme points along the y direction too. Since our
scheme relies on pixel motion, we propose to use x�i

or y�i
,

whichever is higher in magnitude. Note that the fronto-parallel
plane is a special case of our formulation in that the PSFs will
be identical at all locations i.e, x�i

= k ∀i from which the
solution can be inferred as n = [0 0 1]T .

Consider Fig. 2(a) in which we have shown an inclined
plane with surface normal [0 0.5 0.8660]. We applied a set
of homographies arising from camera motion and generated
this blurred image. We choose eight random locations in the
blurred image and their corresponding PSFs are shown in Fig.
2(b). Note that the blur is space-varying, as expected. Due to
translational motion of the camera, the PSFs vary with the
spatial location of the patch. A patch closer to the camera
contains more blur as compared to a patch farther away from
the camera. To determine the extremities of a PSF, we calculate
the row sum and column sum of the PSF and choose the
positions of the first and last non-zero values of the PSF
as extreme points. These points are indicated by red (left-
most) and green (right-most) pixels. Pixels with the same color
constitute point correspondences. Therefore, all the red (green)
points correspond to the same homography.

A. PSF estimation

Although our interest is not in estimating camera motion,
we need to determine PSFs at different spatial locations in the
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blurred image. There exist several methods [20] - [24] in the
literature for blur kernel estimation. We used an off-the-shelf
blind motion deblurring technique [20] to estimate the blur
kernel for a selected patch. Estimating the PSF from a single
motion blurred image is a very ill-posed problem since there
exist many possible combinations of PSF and latent image
that can lead to the same blurred image. Hence, blind motion
deblurring methods typically impose priors on the PSF and
the latent image. The method of [20] reveals that strong edges
need not always lead to accurate PSF estimation and employs
a two-phase approach to estimate PSF. In the first phase, the
authors define a metric to identify useful edges. These edges
are considered to estimate a coarse blur kernel. In the second
phase, an iterative support detection method is used (instead
of hard-thresholding) to estimate the sparse blur kernel. The
method executes fast and the accuracy of PSF estimation is
also quite satisfactory [20].

IV. EXPERIMENTS

In this section, we validate the proposed method with
examples, both synthetic and real. Since both PSF estimation
as well as extreme point detection can involve small errors, we
propose to use about 8 point-correspondences (instead of the
minimum of 3) in equation (10) for robustness against noise.
For the synthetic case, we choose focal length q = 1200 pixels
which is a practical value. For these experiments, we assumed
a surface normal, applied a set of homographies (camera
translations) on an unblurred textured image, and computed
the weighted average of the transformed images to yield the
blurred observation. For the real case, the focal length (usually
in mm) is gathered from the meta-data itself, and is converted
into pixels using the sensor dimensions and the resolution of
the image. The value of d in equation (10) is the same for
all the points lying on the plane and it can be any constant
(other than zero). In this work, we are interested only in the
orientation of plane (and not in d which is embedded in the
constant that multiplies n in equation (10)).

A. Synthetic case

In the first example, we assumed a fronto-parallel planar
scene (n = [0 0 1]T ). We applied a set of translations along
both x and y directions and the blurred image thus obtained
is shown in Fig. 3(a). Due to the fronto-parallel nature of
the scene, all the 3D points are at the same distance from the
camera and experience identical blur. We randomly select eight
(spatially well-separated) patches in Fig. 3(a) and estimate
their PSFs using [20]. These PSFs are shown in Fig. 3(b) and,
as expected, have the same form. The extreme points in each
PSF are detected as discussed earlier in section III and the
displacements between these points is substituted in equation
(10) to solve for the normal. The estimated normal turned out
to be n̂ = [0 0.0632 0.998] which is quite close to the true
normal.

Next, we use the same image as in the earlier ex-
ample but assume an inclined plane with normal n =
[−0.6428 0 0.7660]. Following the procedure outlined earlier
for the fronto-parallel case, a blurred observation (Fig. 4(a))
was generated using a set of transformations for the camera
motion. We randomly selected eight patches (each of size

(a)

(b)

Fig. 3. (a) A fronto-parallel scene with translational blur. (b) PSFs estimated
using [20] at random locations in (a).

(a)

(b)

Fig. 4. (a) Inclined plane with motion blur. (b) PSFs estimated at different
locations in (a).

120×120 pixels) and the corresponding PSFs estimated using
[20] are shown in Fig. 4(b). Note that the blur kernel is space-
variant, as expected. The extreme point correpondences among
the blur kernels have also been indicated in Fig. 4(b). From
the displacements of the extremities, the normal was estimated
using equation (10) by employing only the x−translations. The
result was n̂ = [−0.6007 0.0370 0.7986] which is close to the
actual normal. The angular error between the actual (red arrow)
and the estimated normal (green arrow) is only 3.7 degrees as
depicted in Fig. 4(a).

Yet another synthetic example is shown in Fig. 5(a) with
the true normal being n = [0 − 0.5 0.8660]. The PSFs
are shown in Fig. 5(b) and the normal estimated from the
extremities of the PSFs was found to be n̂ = [−0.0061 −
0.4484 0.8938]. The true and estimated normals shown in
Fig. 5(a) have an angular deviation of 3.9 degrees which can
be attributed to small errors in estimating the PSFs and their
extreme points.

B. Real case

We used a Canon 60D camera to capture real data. The
sensor width of the camera was 23.2 mm and the spatial
resolution was 720× 480 pixels. For the real experiments, we
employed a translational stage to induce translational motion
blur along both x and y directions.

In the first example, we captured a translationally blurred
fronto-parallel textured board (Fig. 6(a)). Akin to the synthetic
case, we choose eight different patches (again of size 120×120
pixels) and determine the PSFs corresponding to the center of
these patches using [20]. The estimated PSFs are shown in
Fig. 6(b) with extreme points marked. The normal estimated
using equation (10) was found to be n̂ = [0 0 1]. Since we
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(a)

(b)

Fig. 5. (a) A blurred inclined plane, and (b) PSFs obtained at eight different
locations in (a).

(a)

(b)

Fig. 6. (a) Fronto-parallel blurred image. (b) PSFs estimated at different
locations in (a).

know apriori that the scene is fronto-parallel, we can conclude
that the estimated normal is indeed correct.

Next, we captured a blurred image of an inclined plane
as shown in Fig. 7(a). One can visually perceive the space-
variant nature of the blur in this image. We randomly picked
eight patches and the estimated PSFs are shown in Fig. 7(d).
The extreme points in each PSF are represented with red (left-
most) and green (right-most) colors. By following the same
procedure discussed in the earlier experiments, the surface
normal was found to be n̂ = [−0.4601 0.0970 0.8825]. Since,
this is a real example, we do not know the true normal. We
ascertain the correctness of the estimated normal by capturing
blurred images of the same plane but with two different
camera translations. Ideally, the estimated normals should be
identical irrespective of the camera motion. We captured two
more blurred images with different in-plane translations and
these are shown in Figs. 7(b)-(c), with their corresponding
PSFs (Figs. 7(e)-(f)). The estimated normals were found to be
n̂= [−0.4886 − 0.051 0.871] and [−0.4601 0.1400 0.8767]
respectively. Note that the estimated normals in all the three
cases are quite close to one another reaffirming the correctness
of our procedure. Furthermore, we physically measured the
orientation of the plane and found it to be 30 degrees. This
is indeed close to the value of 28 degrees obtained using the
proposed method.

We show another real example in Fig. 8(a). We captured
an outdoor ground-plane with the optical axis of the camera

(a) (d)

(b) (e)

(c) (f)

Fig. 7. (a)-(c) Blurred images of an inclined plane for different camera
translations. (d)-(f) PSFs corresponding to figures.(a)-(c), respectively.

(a)

(b)

Fig. 8. (a) Planar surface with motion blur. (b) PSFs estimated at different
locations in (a).

approximately parallel to the ground-plane. The focal length
was 18 mm. From Fig. 8(a), we observe that the image has
significant variations in blur. The lower portion of the image
(close to the camera) has more blur compared to the upper
portion (far from the camera). To recover surface normal, we
selected eight patches such that the patches were spreadout
across the image. Their estimated PSFs are shown in Fig.
8(b). From the PSFs, we can infer that the translation is more
prevalant along the x−direction. The detected extremities in
each PSF are also indicated in Fig. 8(b). By following the
procedure discussed earlier, the normal was computed as
[0.1373 0.9800 0.1442]. Because the optical axis was not
exactly parallel to the plane, the resultant angle turns out to
be 81 degrees which is as expected.

2093



In the final example, a planar scene was imaged as shown
in Fig. 9(a). The bottom of the plane is closest to the camera
while the top edge of the plane is the farthest. The focal
length of the camera (18 mm) was obtained from the image
meta-data. Using sensor dimensions and image size, the focal
length translates to 581 pixels. We randomly picked eight
patches throughout the image and their corresponding PSFs
are shown in Fig. 9(b). After substituting the focal length and
displacements of each PSF in equation (10), the computed
surface normal was found to be [0 − 0.3713 0.9151] and is
indicated by a green arrow.

(a)

(b)

Fig. 9. (a) A planar surface with translational motion blur. (b) Blur kernels
extracted at different spatial locations in (a).

V. CONCLUSIONS

We proposed a scheme, which we believe is the first of
its kind, to estimate planar orientaion from a single motion
blurred image. We revealed the underlying relationship be-
tween the surface normal of a planar scene and the induced
space-variant nature of blur due to translational motion. Ex-
ploiting correspondences among the extreme points of the
PSFs, we constructed a set of linear equations whose solution
yields the surface normal. The method was validated on
synthetic as well as real images.

Since our method can explain planes, it offers a conve-
nient platform for attempting restoration of piecewise planar
motion-blurred scenes. As future work, we plan to relax the
translational constraint and extend our method to the case of
general camera motion. Yet another direction to pursue is to
automatically segment and estimate surface normals when the
scene consists of multiple planes.
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