
Multi-Label Learning with Missing Labels

Baoyuan Wu∗, Zhilei Liu†, Shangfei Wang†, Bao-Gang Hu∗ and Qiang Ji‡
∗ National Laboratory of Pattern Recognition, CASIA, Beijing 100190, China
† University of Sciences and Technology of China, Anhui 230027, China

‡ Rensselaer Polytechnic Institute, NY 12180, USA

wubaoyuan1987@gmail.com, leivo@mail.ustc.edu.cn, sfwang@ustc.edu.cn, hubg@nlpr.ia.ac.cn, qji@ecse.rpi.edu

Abstract—In multi-label learning, each sample can be assigned
to multiple class labels simultaneously. In this work, we focus
on the problem of multi-label learning with missing labels
(MLML), where instead of assuming a complete label assignment
is provided for each sample, only partial labels are assigned with
values, while the rest are missing or not provided. The positive
(presence), negative (absence) and missing labels are explicitly
distinguished in MLML. We formulate MLML as a transduc-
tive learning problem, where the goal is to recover the full
label assignment for each sample by enforcing consistency with
available label assignments and smoothness of label assignments.
Along with an exact solution, we also provide an effective and
efficient approximated solution. Our method shows much better
performance than several state-of-the-art methods on several
benchmark data sets.

I. INTRODUCTION

In multi-label learning, one instance can be assigned to
several categories simultaneously [1]. It has been successfully
applied in many real problems, such as image annotation [2]–
[4], semantic scene classification [5], and text categorization
[6], [7]. However, in traditional multi-label learning, an impor-
tant assumption is that the training instances are completely
labeled. For example, three candidate categories c1, c2, c3 are
provided for all instances. One instance xi is labeled as
(c1,¬c2, c3). It means that xi is assigned to c1 and c3, not
assigned to c2. c1 and c3 are referred to as positive labels
for xi, while c2 is referred to as negative labels. However,
the completely labeled instances are not always available in
real problems. There are two main reasons [2], including
the large number of candidate categories and the ambiguity
between categories. A typical sample is the annotation of
facial action units (AUs) [8], which is an important problem in
affective computing. AU should be labeled by trained experts
[9], due to the ambiguity between AUs, such as cheek raiser
(AU6) v.s lid tightener (AU7). In this case, it is difficult to
provide the complete AU labels for one facial image (the
detailed definitions of all 64 AUs can be found in [8]). More
formally, if xi is labeled as (c1,¬c2, ?c3), it means there is
no information about whether xi is labeled as c3 or not. c3 is
referred to as the missing label for xi. xi is called as partially
labeled sample, in which missing labels exist. If xi has only
missing labels, then it is called as completely unlabeled sample.
Our goal is to predict the complete label assignments of
the unlabeled samples by exploiting the partially (including
completely) labeled samples, referred to as multi-label learning
with missing labels (MLML).

Many previous multi-label learning models that also handle
the missing labels can be seen as the special case of MLML.
The semi-supervised multi-label learning (SMSE2) [10] ad-

dresses the special case with samples either fully labeled
or completely unlabeled. Both MLR-GL [2] and weak label
learning (WELL) [3] consider the case that only a partial set
of positive labels and missing labels are provided for each
training sample. To handle the missing labels, a common
solution adopted in above three models is treating the missing
labels as negative labels, and then they become a fully labeled
multi-label learning problem. This assumption is made based
on the observation that most labels are negative labels for each
sample. However, it is not always true, and will introduce
undesirable bias to the original learning problem. A obvious
bias is that some ground-truth positive labels are incorrectly set
as negative labels. As we will show in the later experiments,
such a bias may lead to poor and unstable performance.

We formulate the MLML problem through extending the
SMSE2 [10], based on two assumptions of label consistency
and label smoothness. Label consistency encourages the pre-
dicted label matrix to be consistent with the provided label ma-
trix. Label smoothness is implemented on two levels: sample-
level smoothness means two samples with similar features
should have similar labels; class-level smoothness indicates
that two semantically dependent classes should have similar
instantiations. Although exploiting the same assumptions with
SMSE2, we explicitly distinguish the negative and missing
labels. As we will show in the later experiments, such a change
will lead to significant performance improvement, because the
bias of the initial label matrix vanishes in our formulation.
Moreover, we not only use the exact solution based on solving
the Sylvester equation, which is also used in SMSE2 [10], but
also propose an efficient and effective approximated solution
to the MLML problem.

The following three points highlight our contributions. (1)
We present a general definition of the multi-label learning
with missing labels, which can generalize several previous
models. The significant change is that the positive, negative and
missing labels are explicitly distinguished in MLML. (2) We
present both the exact solution and an efficient and effective
approximated solution to the MLML problem. (3) The efficacy
of the proposed method is verified on three benchmark data
sets compared with several related works.

The rest of this paper is organized as follows: Section
II presents the formulation and solution of the multi-label
learning with missing labels; Section III conducts numerical
experiments on three benchmark data sets; Section IV con-
cludes this paper.

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.343

1964

The initial label matrix Y

[
1 1 0 0 0 0
1 −1 0 −1 0 0
−1 0 1 0 0 0

]

Fig. 1. A graphical illustration of multi-label learning with missing labels. The figure on the left consists of two layers: the bottom layer includes the sample
nodes; the top layer contains the class nodes. The initial labels of samples are represented by the links between two layers: the solid link indicates a positive label;
the dashed link denotes a negative label; no link means a missing label. The initial label matrix is presented on the right, where one column vector corresponds
to one sample node and one row vector corresponds to one class node. The links between nodes in the bottom layer represent the similarities between different
samples; the links between nodes in the top layer denote the semantic dependencies between the classes. Note that both layers are 2-D fields, and we just plot
a chain for clarity.

II. MULTI-LABEL LEARNING WITH INCOMPLETE LABELS

A. Problem Formulation

In the data set X = (x1, . . . , xn), each sample xi ∈ Rd×1

can be associated to m classes C = {c1, c2, . . . , cm} simulta-
neously. Specifically, the labels of xi can be represented as a
column vector yi ∈ {1, 0,−1}m×1. We define an initial label
matrix Y = (y1, y2, . . . , yn) ∈ {1, 0,−1}m×n: the positive
label Yij = 1 indicates xj is labeled as ci; the negative label
Yij = −1 means xj is not labeled as ci; the missing label
Yij = 0 denotes no information about whether xj is labeled
as ci or not. If all entries of yi are non-zero, then xi is an
fully labeled instance. If yi contains zero and non-zero entries
together, then xi is a partially labeled sample. If all entries of yi
are zero, then xi is a unlabeled sample. Our goal is to predict a
complete label matrix Z ∈ {1,−1}m×n by utilizing the initial
label matrix Y , called as multi-label learning with missing
labels (MLML). A brief illustration of MLML is presented in
Figure 1. To achieve this goal, we exploit two assumptions
[10] as follows:

• label consistency. The predicted label matrix Z
should be consistent with the initial label matrix Y ;

• label smoothness. The smoothness assumption is im-
plemented on two levels: the sample-level smoothness
means if the two samples xi and xj are similar, then
their labels, i.e., the corresponding column vectors
of Z should be similar; the class-level means if two
classes ci and cj are semantically similar, then their
instantiations, i.e., the corresponding row vectors of Z
should be similar.

Based on above assumptions, we formulate the MLML
problem as follows [10]:

argmin
Z
‖ Z − Y ‖2F +

λX

2
tr(ZLXZT) +

λC

2
tr(ZTLCZ),

(1)

where λX and λC are user-defined positive constants, which
can be tuned by cross validation. Actually, in Section III-D,
we will show that the proposed method is not very sensitive
to these two values. ‖ · ‖F denotes the Frobenius norm, while
tr indicates the trace of matrix. The first term denotes the
label consistency, while the last two terms represent the label

smoothness. Specifically, we have

tr(ZLXZT) =

m∑
k=1

n∑
i,j

VX(i, j)

(
Zki√
dX(i)

− Zkj√
dX(j)

)2

,

where LX = I − D
− 1

2

X VXD
− 1

2

X with the diagonal matrix
DX = diag(dX(1), · · · , dX(n)). I denotes the identity matrix
of the adaptive size, and hereafter we use the same symbol I
to represent different sized identity matrices for clarity. The
normalization term dX(i) =

∑n
j VX(i, j) makes the above

smoothness term invariant to the different scaling factors of
the elements of VX [11]. VX denotes the similarity matrix
among samples, which will be specified later. Similarly, we
also have

tr(ZTLCZ) =
n∑

k=1

m∑
i,j

VC(i, j)

(
Zik√
dC(i)

− Zjk√
dC(j)

)2

,

where LC = I − D
− 1

2

C VCD
− 1

2

C with the diagonal matrix
DC = diag(dC(1), · · · , dC(m)). And dC(i) =

∑m
j VC(i, j)

normalizes the factor so that the above smoothness term is not
affected by the different scaling factors of the elements of VC .
VC denotes the similarity matrix among classes, which will be
specified later.

B. Similarity matrices

1) The sample similarity VX : VX includes all pairwise
correlations among X . Here we utilize the affinity matrix, as
follows:

VX(i, j) = exp
(− d2(xi, xj)/σiσj

)
, (2)

which is computed based on a k-nn graph, i.e., if xj is not
within the k-nearest neighbors of xi, then Aij = 0. We set
k = 20 in experiments. Note that VX(i, i) = 0. d(xi, xj)
denotes the distance between xi and xj (here the Euclidean
distance is used). σi = d(xi, xh), where xh is the h-th nearest
neighbor of xi. Following the suggestion in [12], we set h = 7.

2) The class similarity VC: VC embeds the semantic cor-
relations among the classes C. Some works have focused on
developing the semantic correlations, such as subset constraints
and exclusion constraints [4], [13]. Here we simply define a
m-square weight matrix, as follows:

VC(i, j) = exp
(− η[1− 〈Y ·i, Y ·j〉

‖ Y ·i ‖‖ Y ·j ‖
]
)
, (3)

1965

where Y ·i = (Y1i, Y2i, . . . , Yli) is a sub-vector of Y·i, and l de-
notes the number of partially labeled samples1. The parameter
η is set as 10 in our experiments.

C. Solutions

1) An exact solution: For clarity, we denote the objective
function (1) as J (Z). Obviously it is a convex optimization
problem, such that we can easily gain the global optima by
setting the derivative of J (Z) with respect to Z as 0, as
follows:

∂J (Z)

∂Z
= 2(Z − Y) + λXZLX + λCLCZ = 0. (4)

It equals to solve a Sylvester matrix equation, as follows:

Z(I + λXLX) + (I + λCLC)Z = 2Y. (5)

There have been many works about solving this equation [14],
[15]. It has a unique solution. However, the computational
complexity is O(n3). For a large data set, it means a high
cost. Note that the entries of Z∗ will be continuous values.
We can do label ranking in each row to recover the integral
values. We denote this solution as MLML-exact.

2) An approximated solution: We find an interesting issue
that the objective function (1) is completely same with the
one used in [16], which wants to propagate the pairwise
constraints among two sources. A a result, we can utilize
the efficient method designed for constraint propagation to
solve (1). The main idea is to solve (1) through an alternative
optimization procedure. Specifically, J (Z) is divided into two
sub-problems:

Z∗X = argmin
ZX

1

2
‖ ZX − Y ‖2F +

λX

2
tr(ZXLXZT

X),(6)

Z∗ = argmin
Z

1

2
‖ Z − Z∗X ‖2F +

λC

2
tr(ZTLCZ), (7)

where ZX ∈ Rm×n. Denote the objective functions in above
two equations as J1(ZX) and J2(Z) respectively. Set their
derivatives with respect to ZX and Z as 0, then we gain:

∂J1(ZX)

∂ZX
= ZX − Y + λY ZXLX = 0, (8)

∂J2(Z)

∂Z
= Z − Z∗X + λCLCZ = 0. (9)

Combining the above two equations, one can easily obtain a
closed-form solution as follows:

Z∗ = (1−αX)(1−αC)(I−αCLC)
−1Y (I−αXLX)−1, (10)

where αX = λX

λX+1 ∈ (0, 1), αC = λc

λc+1 ∈ (0, 1). LX =

D
− 1

2

X VXD
− 1

2

X , LC = D
− 1

2

C VCD
− 1

2

C . This solution is denoted
as MLML-appro.

III. EXPERIMENTS

In this section, we test the proposed method in three bench-
mark data sets in multi-label learning, including Emotions [17],
AU [18] and Yeast [19], as shown in Table I. The predicted
labels of the unlabeled testing samples are evaluated by the
metric of the area under the ROC curve (AUC) [20].

1Since the label values of the completely unlabeled samples are all 0, they
can not provide useful information for the semantic correlations. This is why
we ignore the label entries corresponding to the completely unlabeled samples
in Eq. (3).

TABLE I. DATA STATISTICS

data set domain #
exam.

#
categ.

fea. avg. positive-
class/sample

avg. positive-
sample /class

Emotions [17] music 593 6 72 1.87 184.7
AU [18] image 327 16 201 3.99 81.5
Yeast [19] biology 2417 14 103 4.23 731.5

A. Experiments Setting

1) Data processing: In all experiments, each feature is
normalized into [−1, 1] for all data sets. The whole data set
is randomly partitioned to 5 uniform folds. In each time one
fold is used as the testing data, while the other four folds are
training data. We repeat this process 10 times, then 5×10 = 50
results are gained. The mean value and standard deviation (std)
are computed as the final outputs. To present the influence of
missing labels, we vary the given label proportion in training
data, from 20% (80% missing labels) to 100% (no missing
labels). In each proportion, the missing labels are randomly
chosen and removed from the ground-truth complete label
matrix of the training data, then the initial label matrix Y is
gained.

2) Comparisons: We compare the proposed method with
several previous works on multi-label learning with missing
labels, including SMSE2 [10], WELL [3] and MLR-GL [2].
We implement SMSE2 in matlab and adopt the publicly
available matlab codes for WELL and MLR-GL. Note that
SMSE2 is originally designed for semi-supervised multi-label
learning, but it can also solve the MLML problem by setting
the missing labels as negative labels. So we also run SMSE2
in the cases that missing labels exist in training data. In both
MLML and SMSE2, the two trade-off parameters αX and
αC are determined by the 5-fold cross-validation within the
training data. We make our best effort to adjust the parameters
in other methods as suggested in the original papers. Besides,
as a baseline, a binary logistic regression classifier is trained
based on only labeled samples for each class independently,
and is implemented by the built-in functions glmfit and glmval
in matlab.

B. Classification Results

The AUC results on different data sets are shown in
Table II, III and IV respectively. The proposed methods show
the best performance in most cases. MLML-appro gives the
similar results with MLML-exact, and the effectiveness of the
proposed approximated solution is verified. Note that MLML-
appro performs even better than MLML-exact in some cases.
This is possible. Because we do not optimize the AUC value
directly, so the global optima of the objective function (1) may
not correspond to the highest AUC value. But the consistency
between (1) and the AUC value still holds in most cases. Com-
pared with SMSE2, MLML-exact always give better results,
especially in the case of low label proportion, which demon-
strates the benefit of explicitly distinguishing the negative and
missing labels. However, the larger improvement of MLML
is reflected in robustness, which will be verified later. WELL
shows poor performances in most cases, especially on the case
of low label proportion, suffering from its confusion between
negative and missing labels. The binary logistic regression also
performs poor when the label proportion is low. We believe
the reason is over-fitting, i.e., the small data size and the
large number of parameters. The over-fitting is most obvious

1966

on the AU data, where the total data size is 327, but the
parameter is up to 202. MLR-GL shows the best performance
among the compared methods. However, 4 parameters need
to be manually tuned, and its performance is sensitive to the
parameters in our experiments. In contrast, only 2 trade-off
parameters should be manually determined in MLML. As we
will show later, MLML is robust to the parameters. Moreover,
MLR-GL gives an iterative solution, while we present the
closed form solution to MLML. The running time between
them will also be compared later. Moreover, due to the label
bias, the positive label proportion in the ground-truth label
matrix should be an important factor which can influence
the specific results of all methods and the performance gap
between other methods and MLML method. However, the
positive proportions of three data sets used in our experiments
are nearly same (see Table I). We will evaluate the relationship
between this proportion and the performance on more data sets
with different positive proportions in future work.

TABLE II. AUC RESULTS (%) ON EMOTIONS DATA

Algorithms
Label Proportion

20% 40% 80% 100%

Logistic 70.42±1.44 75.49±1.07 83.51±0.81 84.89±0.15
WELL [3] 69.26±1.36 76.76±1.00 81.23±0.26 82.33±0.36
MLR-GL [2] 84.64±0.30 85.92±0.35 87.57±0.25 87.86±0.17
SMSE2 [10] 83.91±0.67 85.72±0.41 87.23±0.14 87.19±0.24
MLML-appro 84.88±0.62 86.77±0.32 87.20±0.21 87.81±0.19
MLML-exact 84.73±0.67 86.84±0.51 87.46±0.22 87.89±0.22

TABLE III. AUC RESULTS (%) ON AU DATA

Algorithms
Label Proportion

20% 40% 80% 100%

Logistic 71.03±0.56 68.15±0.86 65.87±2.19 81.83±0.73
WELL [3] 78.15±0.71 83.90±0.52 82.29±0.17 82.22±0.05
MLR-GL [2] 87.46±0.45 89.44±0.38 90.68±0.25 91.39±0.09
SMSE2 [10] 85.04±0.47 88.36±0.56 90.97±0.21 91.88±0.27
MLML-appro 85.17±0.47 89.69±0.29 91.90±0.20 92.40±0.21
MLML-exact 87.27±0.42 89.71±0.19 91.91±0.22 92.46±0.23

TABLE IV. AUC RESULTS (%) ON YEAST DATA

Algorithms
Label Proportion

20% 40% 80% 100%

Logistic 77.67±0.35 80.80±0.30 82.47±0.10 83.00±0.07
WELL [3] 76.92±0.66 78.23±0.28 78.81±0.21 79.20±0.04
MLR-GL [2] 82.58±0.04 83.35±0.04 83.90±0.04 84.01±0.05
SMSE2 [10] 78.33±0.11 79.19±0.10 79.50±0.03 79.76±0.02
MLML-appro 82.74±0.13 83.02±0.07 84.51±0.11 84.70±0.06
MLML-exact 83.05±0.19 83.69±0.08 84.41±0.08 84.70±0.12

C. Empirical running time

The empirical running time (the average CPU time of 50
trials) of different methods are shown in Table V. All values
are recorded based on the same machine with the Windows
7 system and Intel Core i5 2.30GHz CPU. For MLR-GL,
the number of iterations T is about 10 in our experiments.
Note that the cost of computing the distance matrix between
instances is not included, since it is a shared step in all the
methods except the binary logistic regression. Obviously the
proposed approximated solution is much faster than all other
methods.

TABLE V. EMPIRICAL RUNNING TIME (SEC.) OF DIFFERENT METHODS

(T DENOTES THE NUMBER OF ITERATIONS IN MLR-GL).

Data Logistic SMSE2 WELL MLR-GL MLML-appro MLML-exact

Emotions 4.68 0.055 2.31 0.064 ∗ T 0.015 0.055
AU 7.86 0.014 3.57 0.047 ∗ T 0.0036 0.014

Yeast 4.36 7.60 239.3 0.65 ∗ T 1.88 7.60

Fig. 2. AUC results with different parameters, label proportion = 50%: top
row on the Emotions data, Middle row on the AU data, Bottom row on the
Yeast data.

D. Parameter Tuning

The two trade-off parameters αX and αC in both MLML2

and SMSE2 [10] control the influences between the label
consistency and label smoothness. We vary αX and αC to
study (1) the influences of different assumptions and (2) the
robustness of MLML and SMSE2. For clarity, we fix the
label proportion as 50%. We vary two parameters in the range
{0.01 : 0.1 : 0.81}, then 81 results are gained. Results on
Emotions are shown in the top row of Figure 2. For SMSE2,
the results range from 63.31% to 86.73%, and the mean and std
are 75.47±8.84%. In contrast, the results of MLML range from
84.01% to 87.43%, and the mean and std are 86.63± 0.67%.
Results on AU are shown in the intermediate row of Figure
2. The results of SMSE2 range from 69.35% to 89.72%, and
the mean and std are 79.01 ± 6.21%. The results of MLML
range from 84.23% to 91.71%, and the mean and std are
88.93± 1.9%. Results on Yeast are shown in the bottom row
of Figure 2. For SMSE2, the results range from 75.68% to
82.34%, and the mean and std are 80.38± 1.32%. The results
of MLML range from 82.07% to 84.15%, and the mean and
std are 83.41±0.45%. Above results demonstrate that MLML
not only gives the higher AUC values than SMSE2, but also
shows the much better robustness. Note that αY = αC = 0.01
can be considered as ignoring the label smoothness. Compared
with the results in this case, we conclude that the label
smoothness can help to improve the performance of MLML,
and the sample-level smoothness and class-level smoothness
show different influences on different data sets.

2MLML in the section only denotes MLML-exact.

1967

IV. CONCLUSIONS

This paper has solved the general problem of multi-
label learning with missing labels (MLML), which generalizes
several previous models that also handle the missing labels
in multi-label learning. In MLML, the positive, negative and
missing labels are explicitly distinguished, such that the un-
grounded bias on labels in existing models is eliminated. We
have demonstrated that such a change leads to significant
performance improvement. Moreover, we present both the
exact and an efficient approximated solution to the MLML
problem. Experiments on three benchmark data sets have
verified the efficacy of the proposed solutions.

Some future directions of MLML can be explored. First,
the work only involves learning with hard labels, i.e., the given
labels have 100% confidence. However, the hard labels are
not always available in real applications. For example, the
annotation of AU labels is often along with an intensity, i.e., the
confidence of the annotation. These intensities can be easily
transformed into soft labels, ranging from −1 to 1. To the
best of our knowledge, no existing works have focused on
multi-label learning with soft labels. If soft labels are simply
discretized to hard labels, the information distortion will be
introduced. However, we find that the proposed method can be
directly extended to handle the soft labels. So we will explore
more applications with soft labels in future. Second, we simply
use the co-occurrence to compute the semantic dependencies
among classes. Actually some previous works have focused
on exploring the more comprehensive and complex semantic
dependencies, such as [4], [21]. These dependencies can be
exploited in our model, and the performance is expected to be
further improved.

ACKNOWLEDGMENT

The authors would like to thank all reviewers for their
constructive and helpful comments. The work was completed
when the first author was a visiting student at Rensselaer
Polytechnic Institute (RPI), supported by a scholarship from
China Scholarship Council (CSC). We thank CSC and RPI
for their supports. Qiang Ji and Shangfei Wang’s involvement
in this work is supported in part by the Natural Science
Foundation of China (NSFC) under grant 61228304. Bao-Gang
Hu and Baoyuan Wu are supported in part by NSFC 61273196.

REFERENCES

[1] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
International Journal of Data Warehousing and Mining (IJDWM),
vol. 3, no. 3, pp. 1–13, 2007.

[2] S. Bucak, R. Jin, and A. Jain, “Multi-label learning with incom-
plete class assignments,” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 2801–2808.

[3] Y. Sun, Y. Zhang, and Z. Zhou, “Multi-label learning with weak label,”
in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[4] X. Chen, X. Yuan, Q. Chen, S. Yan, and T. Chua, “Multi-label visual
classification with label exclusive context,” in Computer Vision (ICCV),
2011 IEEE International Conference on. IEEE, 2011, pp. 834–841.

[5] M. Boutell, J. Luo, X. Shen, and C. Brown, “Learning multi-label scene
classification,” Pattern recognition, vol. 37, no. 9, pp. 1757–1771, 2004.

[6] S. Gao, W. Wu, C. Lee, and T. Chua, “A mfom learning approach
to robust multiclass multi-label text categorization,” in Proceedings of
the twenty-first international conference on Machine learning. ACM,
2004, p. 42.

[7] S. Yang, H. Zha, and B. Hu, “Dirichlet-bernoulli alignment: A gen-
erative model for multi-class multi-label multi-instance corpora,” in
Proceedings of Neural Information Processing Systems, 2009, pp. 2143–
2150.

[8] P. Ekamn and W. Friesen, “Facial action coding system (facs): manual,”
1978.

[9] M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and
J. Movellan, “Automatic recognition of facial actions in spontaneous
expressions,” Journal of Multimedia, vol. 1, no. 6, pp. 22–35, 2006.

[10] G. Chen, Y. Song, F. Wang, and C. Zhang, “Semi-supervised multi-
label learning by solving a sylvester equation,” in SIAM international
conference on data mining, 2008, pp. 410–419.

[11] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[12] Z. Lihi and P. Perona, “Self-tuning spectral clustering,” in Advances in
Neural Information Processing Systems, 2004, pp. 1601–1608.

[13] S. Park and J. Fürnkranz, “Multi-label classification with label con-
straints,” in Proceedings of the Proceedings of the ECML/PKDD-08
Workshop on Preference Learning (PL-08), 2008, pp. 157–171.

[14] R. Bartels and G. Stewart, “Solution of the matrix equation ax+ xb= c
[f4],” Communications of the ACM, vol. 15, no. 9, pp. 820–826, 1972.

[15] D. Hu and L. Reichel, “Krylov-subspace methods for the sylvester
equation,” Linear Algebra and its Applications, vol. 172, pp. 283–313,
1992.

[16] Z. Lu, H. Ip, and Y. Peng, “Exhaustive and efficient constraint prop-
agation: A semi-supervised learning perspective and its applications,”
arXiv preprint arXiv:1109.4684, 2011.

[17] K. Tsoumakas, G. Kalliris, and I. Vlahavas, “Multi-label classification
of music into emotions,” in ISMIR 2008: Proceedings of the 9th
International Conference of Music Information Retrieval. Lulu. com,
2008, p. 325.

[18] P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
“The extended cohn-kanade dataset (ck+): A complete dataset for
action unit and emotion-specified expression,” in Computer Vision
and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer
Society Conference on. IEEE, 2010, pp. 94–101.

[19] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classi-
fication,” NIPS, vol. 14, pp. 681–687, 2001.

[20] S. Bucak, P. Kumar Mallapragada, R. Jin, and A. Jain, “Efficient multi-
label ranking for multi-class learning: application to object recognition,”
in Computer Vision, 2009 IEEE 12th International Conference on.
IEEE, 2009, pp. 2098–2105.

[21] S.-J. Huang and Z.-H. Zhou, “Multi-label learning by exploiting label
correlations locally,” in AAAI, 2012, pp. 949–955.

1968

