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Abstract� In this paper an iris detection scheme for noisy 

images acquired by means of mobile devices is presented. Iris 
segmentation is accomplished by exploiting the use of the 
watershed transform with the purpose of identifying the iris 
boundary as much precisely as possible. After a pre-processing 
step aimed at color/illumination correction, the watershed 
transform is computed and suitably binarized. Circle fitting is 
then accomplished to identify the limbus boundary by using 
curvature approximation and a cost function for circle scoring. 
The watershed transform is furthermore employed to distinguish, 
in the zone delimited by the best fitting circle, the regions actually 
belonging to the iris from those belonging to eyelids and sclera. 
Finally, pupil detection is accomplished by means of circle fitting 
and by using a voting function based on homogeneity and 
separability criteria. The suggested iris detection scheme has a 
positive impact on an the accuracy in computing the iris code, 
which has in turn a positive impact on the performance of iris 
recognition. 

Keywords�iris detection; watershed transformation; circle 

fitting; smart mobile devices. 

I.  INTRODUCTION 

Iris recognition is commonly used in security applications, 
e.g., physical access control, computer log-in, international 
border crossing, and national ID cards, due to the non 
invasiveness of the available iris acquisition devices, which are 
based on near infrared or visible light technology, and being 
characterized by a large number of features, e.g., uniqueness, 
external visibility and life stability, that make the performance 
of iris recognition higher with respect to that of other 
biometrics. A rich literature covering the key subjects in the 
context of iris recognition is available [1-5]. 

The iris is the annular part of the eye delimited by the white 
sclera and surrounding the pupil, which is generally the darkest 
part of the eye image. Iris features structure is so rich that the 
probability of finding two individuals with the same iris 
features structure is almost zero [1].  Thus, under good 
illumination acquisition conditions and with a cooperative 

subject, iris recognition can be achieved by using simple image 
processing tools. However, the effectiveness of iris recognition 
accomplished under controlled acquisition conditions 
significantly decays when iris has to be captured from moving 
subjects, under uneven lighting conditions and by means of 
rapidly spreading new ICT acquisition tools, such as smart 
mobile devices.  

An iris recognition system has to accomplish a number of 
tasks: 1) eye image acquisition, 2) iris segmentation, 3) 
normalization, 4) iris coding and 5) recognition. Of course, all 
these tasks have to be done accurately, but accuracy is really 
crucial as regards iris segmentation, since the quality of the 
result of this task strongly conditions the outcome of the whole 
recognition process. In this paper we focus on iris segmentation 
for eye images taken by means of smart mobile devices. In 
particular, we describe an iris segmentation method based on 
the use of the watershed transformation, and show that it 
identifies more precisely the iris boundary and, hence, allows 
us to obtain a more accurately computed code. Our technique 
for Iris Detection on Mobile devices (IDEM) is derived from a 
technique that we have recently introduced [6,7]. IDEM is 
based on the use of the watershed transformation that identifies 
more precisely the iris boundary and, hence, allows us to obtain 
a more stable iris code. IDEM is tested on a set of 1500 eye 
images of 75 individuals. Images have been acquired, outdoor 
and indoor, by using different mobile devices, specifically a 
tablet Samsung Galaxy, an Apple iPhone 5 and a Samsung 
Galaxy S4 smartphone. Due to the different technical features 
of the adopted cameras and to the uncontrolled acquisition 
conditions, at least as regards illumination and distance, the 
images obtained for the same individual are quite different 
from each other. Our aim is to show that this notwithstanding 
IDEM is able to reliably detect the irises so that recognition can 
be accomplished in a satisfactory manner. The interoperability 
of IDEM is also investigated by performing cross-datasets 
experiments. IDEM includes a pre-processing phase, described 
in Section II, to improve the quality of the input eye image. 
Section III is concerned with computation and binarization of 
the watershed transform of the gradient image, which will 
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facilitate circle fitting. Section IV describes in detail how 
IDEM performs iris detection. This is accomplished by 
employing twice circle fitting. The first time, circle fitting is 
done to detect limbus boundary. IDEM furthermore exploits 
the use of the watershed transform to distinguish among the 
pixels inside the circle better fitting the limbus boundary those 
really belonging to the iris from those possibly belonging to 
eyelids and sclera. Then, circle fitting is done for pupil 
detection. A short description of the iris recognition approach 
used to test recognition accuracy and interoperability is 
provided in Section V. Section VI regards the experimental 
setup, while final remarks are given in Section VII. 

II. PREPROCESSING 

IDEM works with images in the RGB color space. Each 
color is a point in the 3D Cartesian space with red, green and 
blue as coordinate axes. Since the R, G, B values are in the 
range [0,255], colors are the points within a cube spanning 
from the origin (0, 0, 0), black, to (255, 255, 255), white. 

A color/illumination correction is accomplished to reduce 
local distortions introduced during the uncontrolled iris 
acquisition, such as shadows and different color temperature. 
To this aim, the three RGB components are processed 
separately as gray level images by a Gaussian filter, with 
experimentally fixed kernel dimension n=128 and variance 

�=10. Then, we take into account that, according to the 
Lambertian reflectance theory, the image intensity of the 
diffusely reflected light is obtained by multiplying the albedo 
by the intensity of the incoming light and that the albedo can be 
computed as the ratio, pixel by pixel, between the intensity 
image and its smoothed version filtered by a Gaussian filter. 
Thus, for each of the three gray level images we build a new 
image whose pixels are set to the ratio between the values of 
the homologous pixels in the gray level image and in its filtered 
version. The values are normalized in the range [0,1] and 
mapped again in [0, 255]. The three modified gray level images 
are then combined to originate the color/illumination corrected 
image. As an example, refer to Fig. 1 showing to the left the 
original image and in the middle the color/illumination 
corrected image. 

Size reduction and smoothing is then accomplished to limit 
the total computation time and to reduce the noise in the eye 

images. Size reduction to 200�150 pixels is obtained by using  
a linear interpolation method to compute the three color 
coordinates of each pixel p in the reduced size image as the 
arithmetic mean of the corresponding coordinates of the pixels 
in the block of the original image associated to p. Smoothing is 

done by using a median filter with window size 7�7. See Fig. 1 
right. 

   

Fig. 1. From left to right: an eye image, the image resulting after 

color/illumination correction, and the resized and smoothed image. 

III. WATERSHED TRANSFORM AND BINARIZATION 

The watershed transformation divides an image into a 
number of disjoint regions, where pixels in the same region are 
characterized by a certain degree of homogeneity while pixels 
in adjacent regions are not. Image partition is obtained by 
applying region growing to a suitable set of seeds, generally 
detected as the regional minima in the gradient image. Two 
approaches, known as watershed transform by immersion and 
watershed transform by topographical distance, have been 
suggested in the literature [8].  

The 3�3 Sobel edge filter is applied to each of the three 
color components. The gradient image of the color eye image 
is obtained as the average of the three computed images. See 
Fig. 2 left. Actually, an edge enhancing process - termed 
Lower Completion in [8] - is also applied to each of the three 
computed images before combining them to get the gradient 
image. The effect of Lower Completion can be seen in Fig. 2 
middle-left. Regional minima are detected in the gradient 
image and the topographical distance approach [8] is followed 
to generate the watershed transform W (Fig. 2 middle-right).  

 

    

Fig. 2. From left to right: gradient image, edge enhancement due to Lower 

Completion, the watershed transform, the simplified watershed transform after 

region merging. 

Each partition region is associated a unique representative 
color, computed as the mean value of the colors of pixels 
belonging to it. To simplify the structure of W, we perform 
merging of adjacent regions, provided that their colors differ 
����� ���	� �� ��
������� � �����
���	������ ���� ��� ����� ����
watershed lines resulting after merging are shown in Fig. 2 
right. 

For each region Ri, let dbi and dwi be the Euclidean 
distances of its representative color ci (ri, gi, bi) from black 
(0,0,0) and white (255,255,255). Moreover, let db and dw be 
the arithmetic means of the distances from black and white 
respectively computed for all the representative colors. Finally, 
let dbw be the distance between black and white. Since in 
general pupil and iris (sclera and eyelids) have colors closer to 
black (white) than to white (black), a comparison of ci with db 
and dw could be used to decide whether Ri should be ascribed 
to the foreground (i.e., Ri can be tentatively regarded as 
belonging to iris or pupil), or to the background (i.e., Ri can be 
tentatively regarded as belonging to eyelids or sclera). If it is 
both dbi>db and dwi>dw, a decision on the assignment of Ri 

cannot be taken, while if it is dbi�db and dwi�dw Ri could be 
assigned to both the foreground and the background. In 
other words, there are cases in which some regions may 
remain unassigned (which happens if it results db+dw<dbw), 
and cases where assignment could be done in an ambiguous 
manner (which happens if it results db+dw�dbw). Thus, db 
and dw, though should be reasonably involved in the 
binarization process, cannot be used directly as thresholds. We 
use the ratio dbw/(db+dw) as a multiplicative weight for the 
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arithmetic mean db and define the threshold T for a preliminary 

segmentation of W as as T=db�dbw/(db+dw). Regions whose 
representative color has a distance from black smaller than 
(larger than or equal to) T are tentatively assigned to the 
foreground (background). Binarization is then refined by taking 
into account the representative colors of the regions tentatively 
assigned to the foreground as well as average foreground color, 
cF, and average background color, cB, respectively. The colors 
cF and cB are computed as the arithmetic means of the colors of 
the pixels belonging to regions that have been tentatively 
assigned to the foreground and to the background, respectively. 
Any region Ri tentatively assigned to the foreground and such 
that the distance between ci and cB is not larger than the 
distance between ci and cF is eventually assigned to the 
background.  

IV. IRIS DETECTION 

Since the regions of W consist of pixels characterized by a 
certain homogeneity as far as color is concerned, from now on 
we refer to a quantized version of the true color input image, 
where the colors of pixels in the same region are replaced by 
the representative color for that region (see Fig. 3 left). 

To detect the limbus boundary we use the image B, 
binarized version of W, compute the contour of the foreground 
as the set of black pixels having at least a 4-adjacent white 
pixel (see Fig. 3 middle-left) and apply to it the circle detection 
procedure [9]. 

Since the foreground of B does not exclusively include iris 
and pupil, before applying circle fitting we analyze the 
curvature along the extracted contour so as to divide it into 
components along which the curvature is very smooth (parts of 
the contour shown in yellow in Fig. 3 middle-right), which are 
linked by contour components characterized by strong 
curvature changes (parts of the contour shown in blue in Fig. 3 
middle-right). Circle fitting will be accomplished only on the 
contour components that are smooth curves and include a 
sufficiently large number of pixels (at least 150 pixels in our 
work). For the sake of completeness, we remark that to save 
computation time, we use an estimate of curvature, rather than 
calculating the exact value. Actually, while tracing a contour 
component, its pixels p1,p2����n are recorded in a list. For each 
point pi, the point pi+t is considered, where t is fixed by taking 

into account the length L of the contour as t=4��log2(|L|)���The 
curvature at pi is estimated by the distance between the mid 
point of the straight line segment joining pi and pi+t and the 
contour point midway along the contour arc delimited by pi and 
pi+t. 

Among all circles detected by the algorithm [9] as fitting 
the selected smooth components of the contour, those included 
for at least 80% in the image undergo a voting process to 
detect the best fitting circle. The score for a given circle C, 
centered in (x, y) and with radius r, is computed by 
considering two additional circles centered in (x, y) and with 
radii 0.9r and 1.1r, respectively. For each point in C, 
represented in the polar coordinate system (���������������������
located at the same angle �, on the two circles with radii 0.9r 
and 1.1r are considered and the total sum of differences 
between their corresponding two pixels in the binary image 

(Fig.3 left) is taken as score for C. The circle with the 
maximal score, shown in red in Fig. 3 right, is taken as the one 
better fitting the limbus boundary. 

 

    

Fig. 3. From left to right: the quantized image where all pixels in the same 

region of the watershed transform are assigned the representative color of that 

region, the binarized watershed transform, contour components with smooth 
curvature (yellow parts) and strong curvature changes (blue parts), the best 

fitting circle (in red). 

We use again the watershed transform W and its binarized 
version B to correctly identify, among the pixels enclosed by 
the circle better fitting the limbus, the pixels actually belonging 
to iris and pupil. To this purpose we take into account all the 
regions of the W at least partially overlapping the detected 
circle (shown in purple in Fig. 4 left). Regions of W totally 
overlapping the circle may belong to the foreground of B 
(shown in red in Fig. 4 middle-left) or to the background of B 
(shown in blue in Fig. 4 middle-left). Regions of W only 
partially overlapping the circle (shown in yellow in Fig. 4 
middle-left) may belong to the foreground or the background 
of B.  

 

    

Fig. 4. From left to right: circle detected by circle fitting (purple) 

superimposed on the watershed transform, watershed regions totally 

overlapping the circle (red and blue) and partially overlapping the circle 
(yellow), result after the assignment to the foreground (black) of totally 

overlapping regions, subdivision of the partially overlapping regions. 

Let ciris be the arithmetic mean of the colors of the pixels 
of the quantized image that: i) are within the circle and ii) are 
in the foreground of B. Only the regions in red and part of the 
regions in yellow in Fig. 4 middle-left contribute to ciris. 
Moreover, let cback be the arithmetic mean of the colors of the 
pixels of the quantized image that are outside the circle and 
that have been assigned to the background in B. Note that the 
regions in blue in Fig. 4 middle-left do not contribute to cback. 
The values ciris and cback can be seen as the colors representing 
iris and pupil, and the background respectively. 

To achieve the desired segmentation of W, where the 
foreground includes only iris and pupil, we will assign to each 
region of W one out of two markers, f and b. We can safely 
assign the background marker b to the watershed regions that 
do not overlap at all the circle. In fact, these regions certainly 
belong to the background. As for the remaining watershed 
regions, some further processing is necessary to decide on 
their assignment. To this aim, we introduce two preliminary 
markers, f+ and f-, and assign them to the watershed regions 
completely overlapping the circle (marker f+, red and blue 
regions in Fig. 4 middle-left) and only partially overlapping 
the circle (marker f-, yellow regions in Fig. 4 middle-left).  
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Any region Ri with marker f+ has its marker changed into f 
if at least one of the following conditions is satisfied: 

1) the Euclidean distance between ci and cback is larger than 
the Euclidean distance between ci and ciris; 

2) Ri belongs to the foreground in B, and at least one of its 
neighboring regionsi has marker f+, while no neighboring 
regions exist with marker f-.  

The first condition segments as belonging to the 
foreground any watershed region whose representative color is 
closer to the average color of iris and pupil, than to the the 
average color of the background. The second condition takes 
into account also the classification of the watershed regions in 
the binarized image B, to assign to the foreground regions 
that, though characterized by a representative color that would 
justify assignment to the background, are not isolated as 
regards the property of being completely overlapping the 
circle, and have been assigned to the foreground in B. 

Since regions with marker f+ may still exist, a second 
process is done, which is based on the minimum Euclidean 
distance dmin between the representative color of a region with 
marker f+ and the representative colors of its adjacent regions 
that have already been assigned to the foreground. If the 
Euclidean distance between the representative color of the 
region at hand and cback is not smaller than dmin, the marker is 
changed to f. Otherwise, the marker is set to b.  

The rationale for assigning to the foreground a region 
whose representative color is closer to the average color of the 
background than to the average color of the iris, is that some 
neighboring regions, already assigned to the foreground, exist 
to which the color of the region at hand is closer than to the 
average color of the background.  

The regions having initially marker f+ and assigned to the 
foreground (background) are shown in black (white) in Fig. 4 
middle-right. As for the regions with initial marker f-, they are 
divided into two sub-regions, respectively including pixels 
within the circle, and pixels outside the circle. The former sub-
regions (shown in red in Fig. 4 middle-right) receive marker 
f+ and the latter sub-regions (shown in green in Fig. 4 middle-
right) receive marker b. Then, the quantized image and the 
values ciris and cback are updated before the final decision is 
taken for the new regions with marker f+. Any such a region 
Ri is assigned to the foreground if at least one of its 
neighboring regions has already been assigned to the 
foreground, and at least one of the following conditions is 
satisfied: 

i) the Euclidean distance between ci and ciris is not larger 
than the Euclidean distance between ci and cback 

ii) the Euclidean distance between ci and cback is not 
smaller than the minimum Euclidean distance in color 
between ci and the regions adjacent to Ri and with marker f.  

Otherwise, the region Ri with marker f+ is assigned to the 
background. The detected foreground is shown in Fig. 4 right. 

Since pupil is always inside the iris, only the portion of the 
color/illumination corrected image inside the circle 
approximating the limbus is considered as the Region Of 

Interest (ROI) for pupil detection. The color ROI image is 
converted to a gray level image that is processed by Canny 
filter. Ten different thresholds {0.05, 0.10, 0.15, ..., 0.55} are 
used, which originate ten Canny filtered images. In each of 
them, the connected components of edge pixels are extracted 
and pixel counting is performed. Circle fitting [9] is 
accomplished for the connected components including enough 
pixels (more than 50 pixels in our work). Only circles entirely 
included in the circle approximating the limbus processed by a 
voting function based on homogeneity and separability. 
Homogeneity is evaluated in terms of the histogram of the 
region included by the circle. Separability is evaluated by an 
���
���
� ������
� ��� ����������	!�� �	���
���""�
�	��������
���
�
that  averages, over all angle �, the difference in grey levels of 
corresponding pixels on two circles concentric with the 
candidate circle with radius �, and having radii �1=0.9�, and the 
�2=1.1�. The score assigned to each circle is the sum of the 
scores on homogeneity and on separability. The circle with the 
maximal score is selected as the one better approximating the 
pupil. 

A few examples showing the performance of our iris 
detection algorithm can be appreciated in Fig. 5, where red and 
green curves delimit the limbus boundary and the pupil 
boundary, respectively. 

 

     

Fig. 5. Red and green curves denote the limbus and pupil boundaries 

detected by IDEM. 

V. IRIS RECOGNITION 

Since this paper also aims to evaluate the interoperability of 

IDEM among different mobile devices, an iris recognition 

approach has been exploited for this purpose. After the 

detection process, the iris is extracted from the whole image 

and the original annular region in the Cartesian space is 

mapped to a rectangular  region in the polar space by applying 

the rubber sheet model suggested by Daugman [1]. A color 

space conversion from the original RGB to the HSV is 

performed to treat the luminance and chrominance information 

separately. A color histogram of 64 bins is built by combining 

information coming from the H and S channels, while the 

cumulative sums approach (CSUM) [10] is applied to the 

luminance channel V to extract a binary iris code. Even when 

comparing two irises, histograms and binary codes are treated 

separately. The cosine dissimilarity is used for the former, 

while the Hamming distance is adopted for the latter, and the 

two resulting distance values are then combined by means of 

the simple sum rule.  

VI. EXPERIMENTAL RESULTS 

The images IDEM has been tested on are from the MICHE 

iris database [12]. The MICHE dataset consists of 3132 iris 
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images, either left or right, captured from 75 subjects by 

means of three different mobile devices: i) a Samsung Galaxy 

S4 (SG4), ii) an iPhone 5(IP5) and a Samsung Galaxy Tablet 

(SGT). For the SG4 and the IP5 devices the iris images have 

been acquired from both the frontal and the retro camera, 

while only the frontal camera acquisition is available for SGT, 

as it is not equipped with a retro camera. All the images have 

been acquired during the same session both in indoor and 

outdoor settings, so that each subject is provided with at least 

40 pictures (4 for each of the 10 modalities - indoor/outdoor, 

frontal/retro, different device). In our experiments we 

considered only a subset of the whole MICHE, which consists 

of 1500 images that are the first two pictures of all 75 subjects 

in the 10 acquisition modalities. Iris images were manually 

segmented to extract binary masks that should be accepted as 

ground truth in order to compare the performance of IDEM 

with respect to that of a state of the art approach, namely ISIS 

[2].  

The accuracy of segmentation provided by both tested 

algorithms is quantitatively evaluated in terms of the 

percentage of errors measured in pixels. For the latter, circle 

fitting is applied to binary masks to approximate both iris and 

pupil circles separately. The discrepancy in pixel between 

parameters of the circles computed by the testing algorithm 

and those provided by the ground truth are normalized 

according to the image resolution and multiplied by 100. The 

errors percentage is computed as the average of the errors over 

all images in the testing dataset. It came out from the 

experiments that for a completely inaccurate detection the 

errors percentage is generally higher than a given threshold 

	out, that is directly proportional to the median value md 

computed over all the errors in the subset of tested images 

(	out=8
md). These cases can be considered as outliers and have 

a negative effect on the performance evaluation. For this 

reason, in all tables results are reported for both cases, in 

which the outliers have been included or not in the 

computation. Furthermore, the percentage of outliers, by itself, 

can be seen as an additional parameter to assess the 

effectiveness of a segmentation approach. In each recognition 

test, two images per subject have been considered, one for the 

enrollment (gallery) and the other for testing (probe), while 

the segmentation accuracy was computed on the subset built 

as the union of both gallery and probe. 

 

The aim of the first experiment was to assess the performance 

of IDEM both in terms of segmentation and recognition 

accuracy with respect to that provided by ISIS. The accuracy 

is evaluated in terms of decidability [12]. The decidability 

measures the performance of a recognition system by 

evaluating the average of scores it provides for genuine and 

impostor users. All images are acquired indoor with the retro 

camera (high resolution) for SG4 and IP5 and the frontal 

camera for the SGT. In this experiment probe and gallery sets 

are always composed of images acquired by the same mobile 

device. Results are reported in Table 1 and Table 2. Results in 

Table 1 underline three main aspects: i) IDEM outperforms 

ISIS on low resolution images; ii) IDEM performs better in 

locating the iris than the pupil; iii) IDEM produces a lower 

number of outliers and the increment in accuracy is larger than 

that observed for ISIS when the outliers are not included in the 

performance evaluation. The higher robustness of IDEM on 

low quality images can be explained by the nature itself of the 

segmentation process. Indeed, IDEM first locates iris and then 

limit the search for the pupil in the region delimited by the 

limbus. ISIS performs in the opposite way by first searching 

for the pupil and then polarizing the image with respect to the 

pupil center. However, in low resolution images the pupil area 

is very small, making a precise localization of its center a 

difficult task and this jeopardize all the subsequent steps 

performed by ISIS. On the contrary, the iris still remains 

distinguishable even when the quality of the input image is 

low, thus allowing IDEM to better locate it. This also explains 

why IDEM provides a higher accuracy for iris parameters than 

for those corresponding to the pupil as mentioned by the 

observation (ii). 

 

Table 1. Segmentation accuracy measured in terms of percentage of 
error with respect to manual segmentation for the two tested 
approaches (ISIS and IDEM) on probe/gallery images acquired by the 
same mobile device. 

Device Method 
Iris 
CX 

Iris 
CY 

Iris Rad. 
Pupil 

Cx 
Pupil 
CY 

Pupil 
Rad. 

IP5 

ISIS 

out 30% 

out 2.40 3.18 4.00 2.27 2.39 1.52 

nout 0.67 1.78 1.23 0.34 0.66 0.35 

IDEM 

out 24% 

out 3.63 3.11 1.26 3.63 2.08 0.60 
nout 0.44 1.18 0.52 0.37 0.81 0.40 

SG4 

ISIS 

out 27% 

out 3.16 3.71 3.15 1.14 1.13 1.20 

nout 0.51 1.53 1.02 0.36 0.62 0.41 

IDEM 
out 29% 

out 3.65 4.42 1.53 3.70 4.42 0.65 
nout 0.357 1.47 0.62 0.46 1.27 0.37 

SGT 

ISIS 

out 50% 

out 5.90 7.71 10.08 5.88 7.58 5.39 

nout 3.00 5.57 4.07 3.03 5.41 1.77 

IDEM 
out 28% 

out 6.43 5.55 2.38 6.62 5.72 1.14 

nout 1.43 2.60 1.31 1.63 2.82 0.83 

 

Regarding the number of outliers, both ISIS and IDEM fail in 

locating iris/pupil, because some images into the dataset are 

affected by large occlusions (half-closed eyes) or severe 

illumination changes and out of focus conditions. Generally, 

these kinds of distortions often occur, since the mobile device 

is hold in people hands during the acquisition process.  

 

Table 2. Recognition accuracy measured in terms of decidability for the 
two tested approaches (ISIS and IDEM) on probe/gallery images 
acquired by the same mobile device. 

Method 
Device 

IP5 SG4 SGT 
ISIS 0.474 0.705 0.694 

IDEM 1.039 0.799 0.870 

 

It is worth to notice from Table 2 that IDEM always induce a 
higher decidability value, when combined with the 
implemented iris recognition algorithm (described in Section 
V). This can be ascribed to the fact that despite some cases in 
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which IDEM is worse or more often comparable to ISIS, in 
average it is able to provide a more accurate segmented iris. 
Given that IDEM has shown its superiority in terms of both 
segmentation precision and recognition accuracy with respect 
to ISIS, the latter was not further considered in the following 
experiments. 

In the second experiment, the interoperability of the IDEM 
approach was evaluated, since probe and gallery sets were 
acquired with different mobile devices. Results for this 
experiment are reported in Table 3. 

Table 3. Recognition accuracy measured in terms of decidability for the 
IDEM approach on probe/gallery images acquired by different mobile 
devices. 

IDEM 
Gallery 

IP5 SG4 SGT 

Probe 
IP5 0.474 0.584 0.144 

SG4 0.0892 0.799 0.887 

SGT 0.225 0.243 0.870 

 

By visually inspecting images acquired by different 
devices, it comes evident the discrepancy in image quality 
among pictures captured by the IP5 device and those obtained 
by the SG4 and SGT. Indeed, the former shows a higher 
quality than the latter two for both frontal and retro camera. 
This difference in image quality mainly motivates the poor 
performances obtained by IDEM when tested on cross-
datasets: the probe (gallery) acquired by the IP5 and the gallery 
(probe) by a different device (SG4 or SGT). This is further 
confirmed by the higher decidability values obtained by IDEM 
when cross-testing is performed on images acquired in turn by 
the SG4 and SGT devices. 

 
In the last experiment the recognition performance of 

IDEM was assessed by holding indoor images into the gallery 
and the outdoor images into the probe. This scenario is more 
plausible than the opposite one, as it can be supposed that the 
enrollment of a person is rarely performed (may be just the first 
time), and then it is likely carried out in controlled settings. On 
the contrary, testing is very frequent and may be often 
performed in an uncontrolled environment. Numerical results 
for this experiment are shown in Table 4. 

Table 4. Recognition accuracy measured in terms of decidability for the 
IDEM approach on probe/gallery images acquired by different mobile 
devices. 

Method 
Device 

IP5 SG4 SGT 
IDEM 0.44 0.46 0.42 

 

Observing values in Table 4, it comes out that there is no 
appreciable difference regarding the decidability obtained for 
all the devices. This underlines that the image resolution 
offered by new technology like IP5 and SG4 even if higher 
than that provided by older devices like the SGT, is not able 
alone to compensate for large distortions affecting iris images 
when acquired in a completely uncontrolled setting, making 
iris recognition on mobile devices a more challenging task than 

that addressed when dealing with other biometric traits like 
face. 

VII. CONCLUSION AND FUTURE WORK 

In this paper we introduced a new iris segmentation 
technique for mobile devices, namely IDEM. It exploits the 
watershed transform in a twofold manner, to binarize the iris 
image and to refine the foreground/background segmentation. 
Curvature analysis and circle fitting are then involved to 
precisely locate iris and pupil. IDEM also implements a color 
based recognition technique performing iris matching in the 
HSV color space. This approach has been tested on the MICHE 
dataset, in order to assess its performances in terms of 
segmentation precision, recognition accuracy and 
interoperability. Results have shown that, in average, it 
outperforms other techniques from the state of the art, 
regardless of which of the three mobile devices used in our 
experiments is considered. Several tests have been conducted 
with respect to indoor/outdoor acquisition settings and cross-
datasets. Results have shown that iris detection/recognition on 
mobile device is a challenging task, but also underlined the 
high potential of the proposed technique.  
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