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Abstract—In this work, we are presenting a technique that
allows for accurate estimation of frequencies in higher dimensions
than the original image content. This technique uses asymmetrical
Principal Component Analysis together with Discrete Wavelet
Transform (aPCA-DWT). For example, high quality content can
be generated from low quality cameras since the necessary
frequencies can be estimated through reliable methods. Within
our research, we build models for interpreting facial images
where super-resolution versions of human faces can be created.
We have worked on several different experiments, extracting the
frequency content in order to create models with aPCA-DWT.
The results are presented along with experiments of deblurring
and zooming beyond the original image resolution. For example,
when an image is enlarged 16 times in decoding, the proposed
technique outperforms interpolation with more than 7 dB on
average.

Keywords—Super Resolution, Image generation, Principal
Component Analysis, Discrete Wavelet Transform.

I. INTRODUCTION AND RELATED WORK

Super-resolution (SR) images are images that are recon-
structed with a higher resolution than the original version of
the image but still have a high visual quality. It is easy to
increase the resolution and at the same time reduce the visual
quality, i.e. zooming. SR images have an increased resolution
without reducing the visual quality in a serious way. This kind
of technique can overcome issues with poor image qualities
from low-cost image devices such as surveillance cameras
and inexpensive mobile phones. Even if modern smartphone
cameras can produce relatively high resolution images, most
of them do not have optical zoom. This means that they only
facilitate digital zoom, which reduces the resolution in the
enlarged area. This problem with loss of image quality can be
resolved with SR image reconstruction. A rather conventional,
and suitable, approach to creating SR images is to fuse several
similar low-resolution images of a particular scene into a
high-resolution version of the same. There are solutions that
use only a single image to create a SR version. We create
SR images from a single image so the related research we
review are such works. Information that is not important for
human perception, or masked out by other information, can be
removed while information that is important is retained, based
on knowledge about human perception. In this work, we will
use a frequency content model but not to remove redundant
information but instead to add relevant frequency information
to the existing content of an image. This will allow higher

frequencies to be added to a low frequency image, i.e. an
image with low resolution, in order to create a high resolution
version of the image. Hence, it is possible to improve the
resolution of an image, i.e. create a SR version of the image,
and allow zoom beyond the original resolution of the image.

Another possible application is deblurring of images. A
simple, and widely used, method to remove noise is to filter
the image. Filtering can remove noise but may also cause
loss of sharpness when high frequency content is removed.
With our model it is possible to add frequencies after filtering,
yielding a high frequency image without noise. There are
many applications where it would be desirable to improve
the resolution and/or deblur an image. With our model it is
possible to transmit low resolution video content and estimate
a high resolution version at the decoder side, meaning that low
bandwidth for transmission can be used while the end result
has a high resolution.

In this article we will show how to estimate frequencies of
a higher resolution from an existing image in a reliable fashion.
Encoding can be done with low quality images allowing the
use of low cost devices while decoding of high quality content
is possible. Even if the original quality of the video is high
it can be beneficial to create SR versions of it. This enables
the content to be highly compressed and the transmission cost
can be lowered while high quality images can be decoded. We
will also show how the same technique can be used to deblur
images. In a blurry image, the low frequency information is
the same as in a sharp image. To create a blurry image you
can simply low-pass filter a sharp image. Removal of high
frequency content will produce a low-resolution image. From
the low-resolution image it is possible to create a sharp image
with high resolution by estimating the high frequencies. It is
easy to remove frequencies, the problem is how to add relevant
frequencies. In this work we focus on a model for facial images
and it is only such images that can be improved with our
model. We are not describing a general model that works for
any kind of image.

A. Related work

A lot of research has been aimed at SR imaging and it is a
field that interests many academic researchers as well as com-
panies. Most solutions make use of several images with low
resolution and combine them in various ways to create high-
resolution results. Image fusion of multiple, aligned images
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are used in several solutions and interpolation of images are
used in several other approaches. The solutions that are most
interesting are those that work with a single image to improve
its resolution beyond the original quality. Our work is focused
on improving the resolution in a single image, therefore we
will not list research where working on multiple images is the
main focus. We have video sequences and could have used
multiple images to improve the resolution. Our focus, however,
is to improve single image resolution.

Yang et al. have come up with a solution that is similar to
ours [1]. They use pairs of low-resolution and high-resolution
image patches whereby they can estimate a high-resolution
image from the content of a low-resolution version of the
image. Their idea builds on the fact that image patches can
be represented as a sparse linear combination from an over-
complete dictionary. They relate the low-resolution and high-
resolution image patches into pairs and use the learned image
pair as representation, meaning that the amount of data and
computational cost are reduced compared to their previous
solution [2]. We have compared some of our results with first
method. Glasner et al. propose a method which combines the
use of correspondence between low and high-resolution image
patches and combination of aligned images [3]. Their solution
can work on single images and create SR versions of these
single images. Their use of image patches is similar to the
work presented by Yang et al. Kim and Kwon have a solution
based on sparse regression [4]. Their idea is also very similar
to ours since they build a mapping of low-resolution images
to high-resolution images. This mapping is learned through
regression and they have a sparse solution for this to overcome
the problem with computational complexity associated with
regression. Chang et al. make use of local linear embedding
(LLE) to estimate SR content from a low-resolution version
[5]. Since small image patches have a similar manifold in
both low and high resolution, LLE can model how a SR
patch should be modeled by its low resolution neighbors;
thus enabling creation of SR content from low resolution
content which is similar to it. To improve the visual result
further they also employ smoothness constraints and local
compatibility in the constructed SR images. Freeman et al.
have a solution called example-based SR [6]. In their work they
predict the high frequency information in images using only
the next lower frequency octave. They also use cubic-spline
interpolation for their prediction. The solution is a general one
and they only need one generic training set for any kind of
image. However, this model needs to be specified to accurately
produce the results that the viewer expects, thus creating a need
for specific models. An approach that is similar to ours, which
is aimed at human faces.

II. THEORY AND METHOD

In this section we will describe the different techniques we
have used and how they are combined.

A. Asymmetrical principal component analysis

Asymmetrical Principal Component Analysis (aPCA) is
an extension to Principal Component Analysis (PCA) [7]
that connects a subspace with another subspace or the entire
eigenspace. A detailed explanation of how aPCA works can

be found in [8]. In this work we extend aPCA to the frequency
domain; working with Discrete Wavelet Transform (DWT). We
will first give a short introduction to how aPCA functions in
the spatial domain and then explain how it is used with DWT.

Image parts can be estimated based on other image parts
because there is a correspondence between pixels in the differ-
ent image parts. If there is no correspondence this estimation is
not possible. In the spatial domain it is rather easy to see that
pixels close to each other have a correspondence, e.g. if the
right eye is opened wide the right eyebrow will be raised and
the forehead will be wrinkled. With aPCA you need to have
two different spaces; one for encoding and one for decoding.
In some applications the spaces can model different image
areas; for example the side and front view [9] while in some
applications the two spaces can be a subspace as well as the
entire space, for example the mouth region and the entire face
[10]. In this article we will only use the second approach; a
subspace consisting of a few frequencies and the entire space
with all frequencies.

aPCA is applied to a sequence of images or a video
sequence. First we create a space with regular PCA which
models only a small area of the images; called subset s. Each
image or video frame is transformed into a row vector and is
called I so the model for the image subset Is is modeled in
an eigenspace Φs={φs

1 φs
2 ... φs

N} according to the following
formula (N is the number of frames in the video):

φs
j =

∑

i

bsij(I
s
i − Is0) (1)

where bsij are values from the eigenvectors of the covariance

matrix Cs =
∑

i,j(I
s
i − Is0)T (I

s
j − Is0)} and Is0 is the mean of

the subset pixel area. The subscripts i and j are horizontal and
vertical pixel positions in the images.

A pseudo eigenspace is constructed with the same spatial
size as the original images I. By using the eigenvectors from
the subset area this part becomes orthogonal while the rest of
the pixels are modeled according to the correspondence with
the subset pixels. This space Φp={φp

1 φp
2 ... φp

N} is constructed
as:

φp
j =

∑

i

bsij(Ii − I0) (2)

Coefficients {αs
j} can be extracted from the subset

eigenspace Φs through projection:

αs
j = φs

j(I
s − Is0)

T (3)

These coefficients can then be used with the pseudo
eigenspace for all frequencies:

Î = I0 +
M∑

j=1

αs
jφ

p
j (4)

where M is the selected number of pseudo components used
for reconstruction.
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A full image can be reconstructed (Eq. 4) using the
projection coefficients from only the subset pixels (Eq. 3).
This means that all pixels are estimated from the subset pixels.
That only a few pixels, or frequencies, are needed for encoding
while another subset, or all, frequencies can be decoded is the
strength of aPCA.

B. Choice of wavelet function

In our experiments, four types of wavelet families are
examined; Haar, Daubechies, Symlets, and Coiflets. These
orthogonal wavelets are compactly supported, meaning that
they have finite-impulse response filters leading to efficient
implementations. In this implementation, the four different
mother wavelets are examined extensively. The results demon-
strate that for any sequence of the images, the percentage
of zeros is higher for Haar wavelets compared to the other
wavelets and eventually more energy is retained. Haar wavelets
are chosen in our implementation since the loss of information
is smaller than for the others, leading to better image quality.

C. Discrete wavelet transform (DWT) in different decomposi-
tion levels

A discrete wavelet transform (DWT) divides the frequency
content of an image into four parts called subbands where
information from different orientations is assigned to different
subbands. The four parts are frequency content from hori-
zontal, vertical and diagonal direction plus one subband with
the most important low frequency content. These bands are
obtained by low-pass and high-pass filtering of the image in
the horizontal and vertical directions. The subband labeled
LH1 (horizontal frequencies) is low-pass filtered in the vertical
direction and high-pass filtered in the horizontal direction. LH1

together with HL1 (vertical frequencies) and HH1 (diagonal
frequencies) represent the wavelet coefficients for the different
directions and subband LL1 contains the most important infor-
mation of the image, called approximation image. To obtain
the next coarse level of wavelet coefficients subband LL1 is
further decomposed into four new subbands, LL2, LH2, HL2

and LH2. The decomposition is shown in figure 1. As the
decomposition continues the resolution is lowered so LH2 has
a higher resolution than LH3.

D. Correlation models for the wavelet domain

aPCA works by estimating missing or new information
based on its correlation with existing information. If there is
no correlation between the information parts it will not work.
A wavelet transform alters the original data into uncorrelated
frequency components and it should not be possible to find
any correlation between the different subbands. Although two
coefficients might be close to each other in the spatial domain
they can be located on distantly separated subbands of the
wavelet transform. Consequently a standard wavelet quad-tree,
modeling only parent-child relationships, poorly represents
the existing correlations between the coefficients in different
subbands. By looking at prior models on Gaussian Markov
random field (GMRF) covariance structure it is possible to see
the actual correlation between the frequencies. This issue is
studied by Azimifar et.al. [11]. Their results clearly show that
the wavelet coefficients in different subbands are correlated

Fig. 1. Wavelet decomposition of a facial image (third level decomposition).
Top left corner: LL3, bottom right corner: HH1.

with each other. A coefficient will absorb correlation from
other coefficients in the neighborhood, both within and across
scales, thus allowing the use of aPCA estimation

E. aPCA-DWT

The combination of aPCA and DWT is accomplished by
regarding the DWT subbands as images. Even if the subbands
represent frequencies, they can be regarded as image parts
with pixel values (Figure 1). The process can be divided into
two separate steps; first, a video frame is transformed with
DWT and secondly the DWT version is encoded with aPCA.
The inverse procedure means that a DWT image with more
frequencies than the original image is reconstructed with aPCA
and this image is inversely transformed (IWT) to become a
reconstructed image.

After DWT a certain subband is regarded as an area in an
image and it is simple to apply aPCA to this image. Using
figure 1 as example, the upper left corner is the LL3 subband.
This subband is regarded as subset s and used to create the
eigenspace Φs. The pseudo eigenspace Φp is constructed from
all subbands in figure 1. Φs is used to extract coefficients αs

and these coefficients are used with Φp to estimate all the
subbands based on the information from the LL3 subband.

For this technique to work we need knowledge of the
objects in the scene. In this paper we use facial images and
the model will not work well for other types of objects.
The pseudo eigenspace Φp has known relationships with the
subset eigenspace Φs. If the content in the subset or pseudo
eigenspace is altered so is the model.

III. EXPERIMENTS

Several different experiments have been performed with
aPCA-DWT where all of them use a certain subband as
subset s for encoding and all subbands for decoding. All
experiments show how it is possible to estimate frequencies in
a higher resolution than the original image. There is also one
experiment directly showing how the technique can be used to
zoom and one experiment directly showing how the technique
can be used for deblurring. Each experiment is described in
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TABLE I. ENCODING WITH LL3 SUBBAND FROM COLOR IMAGES.
AVERAGE FOR ALL VIDEO SEQUENCES.

M Reconst. qual. [PSNR]

5 36,5

10 37,7

15 38,3

20 38,8

25 39,3

TABLE II. ENCODING WITH LL3 SUBBAND FROM COLOR IMAGES.
AVERAGE FOR ALL VIDEO SEQUENCES.

Method Reconst. qual. [PSNR]

Bicubic interpolation 32,9

Sparse representation 35,1

aPCA-DWT (M=25) 40,2

detail along with the results in separate subsections. First we
provide a description of the data used for the experiments.

A. Video sequences

We have used six video sequences; each one showing a
person where he/she is displaying the six basic emotions pro-
posed by Ekman [12]. The video sequences are approximately
30 seconds long and a new expression is displayed for three
seconds every five seconds. Between expressing emotions
the person in the video returns to a neutral expression. The
framerate is 15 fps and the resolution is 240x176 for each
video sequence. When we have used LL3 subband as Is it has
a size of 22x30 pixels and for LL4 the size is 11x15.

B. Encoding with LL3 with color images

The three color channels; Red, Green and Blue are en-
coded individually so there are actually three different subset
eigenspaces Φs, pseudo eigenspaces Φp and coefficient sets
αs. The eigenspaces are created individually for each video
sequence. We have used the same number of coefficients M
for all color channels. This means that when the number of
M is 10, R, G and B use 10 dimensions each and the actual
amount of dimensions used is 30. The reconstruction quality
is presented as an average for the three color channels over
all video sequences in table I. In this experiment we have
used LL3 subband for encoding and all available subbands for
decoding.

We have compared our results with the results from Yang
et.al [2]. The input images are subsampled to a quarter of the
size in both horizontal and vertical direction, meaning they
are 16 times smaller than the original images. The subsampled
images are used to estimate a high frequency version of them.
Their method uses image patches for training and we have
trained their model with general image patches. The results
are shown for 2 frames in figure 2 and the average objective
quality (PSNR) for all video sequences are shown in table II.
When we use our images for training we have used 250 images
from a video sequence for training and one for testing.

Fig. 2. Example frames reconstructed with different methods. (left)=Bicubic
interpolation reconstruction (middle)=Images reconstructed with sparse repre-
sentation (right)=Images reconstructed with aPCA-DWT.

Fig. 3. Encoding with LL3 from color images. (left)=Original images
(right)=Reconstructed images.

TABLE III. ENCODING WITH LL3 SUBBAND OF SEVERAL COLOR

IMAGE VIDEOS. AVERAGE FOR ALL VIDEO SEQUENCES.

M Reconst. qual. [PSNR]

5 34,5

10 35,0

15 35,8

20 36,7

25 37,4

C. Encoding with LL3 on frames from different video se-
quences with color images

In the previous experiment we used frames from one
video sequence where the difference between frames is the
facial mimics. To test if the technique works well with more
diverse video content we use frames from five different video
sequences. The frames from the five video sequences are
treated as frames in one long video sequence and the encoding
procedure is exactly the same as in the previous experiments.
Original and reconstructed frames from two video sequences
are shown in figure 3 and the results measured in PSNR are
shown in table III. We have used the same setup as in the
previous experiment (LL3 subband for encoding, all subbands
for decoding) so they are directly comparable.
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(a) (b)

Fig. 4. Blurred and reconstructed version of a grayscale video frame.
(a)=Image blurred with a blur disk size of 8 (b)=Reconstructed image from
blurry encoding with disk size 8.

TABLE IV. ENCODING WITH BLURRY GRAYSCALE IMAGES. AVERAGE

FOR ALL VIDEO SEQUENCES.

Reconst. qual. [PSNR]
M Disk size 4 Disk size 8

5 38,0 38,0

10 39,2 39,1

15 39,9 39,8

20 40,5 40,4

25 41,0 40,8

TABLE V. DEBLURRING QUALITY. AVERAGE FOR ALL VIDEO

SEQUENCES.

Method Reconst. qual. [PSNR]

Blind image deconcolution 34,5

aPCA-DWT (M=25) 41,1

D. Encoding with frequencies from blurred images with
grayscale images

One major difference between sharp and blurry images
is that sharp images contain much more frequencies than
blurry ones. A low-pass filtered image will look blurry and
the only difference from the sharp version of it is that some
frequencies have been removed. By using the same eigenspace
(from LL3 and pseudo eigenspace from all subbands) as in the
first experiment we have correspondence between blurry and
sharp images. In addition, we create blurry images by low-
pass filtering them with a Gaussian blur kernel. This blurry
image is used for encoding on the LL3 eigenspace and a sharp
image can be decoded with the pseudo eigenspace. We use
blurring with a Gaussian disk with size 4 and 8, where the
image with a larger blur disk will be blurrier. A blurred image
using a disk size of 8 and the decoded (deblurred) image
are shown in figure 4 and the result is noted in table IV.
In this experiment we use grayscale images and the result
is not directly comparable to the previous experiments. We
have compared our result with blind image deconvolution
deblurring, presented by Kundur and Hatzinkos [13]. Example
frames are shown in figure 5 and the overall average quality
is shown in table V.

E. Encoding with LL3 of subsampled video with grayscale
images

We have performed one experiment where we use small
size images for encoding compared to the reconstructed im-

Fig. 5. Image deblurring comparison. (left)=Blurred images (mid-
dle)=deblurred with blind image deconvolution (right)=deblurred with aPCA-
DWT.

TABLE VI. ZOOMING (ENLARGING) (LEFT)=INTERPOLATION

RECONSTRUCTION (RIGHT)=APC-DWT RECONSTRUCTION (M=25).
AVERAGE FOR ALL VIDEO SEQUENCES.

Interpol. quality [dB] Reconst. qual. [PSNR]
34,7 41,0

ages. When a subband of a higher order than all available
subbands is used for encoding it actually corresponds to using
a smaller image so all experiments in this article in fact show
the capability of creating SR images with aPCA-DWT. This
experiment clearly shows how this method can be used to
zoom beyond the original resolution of an image. Again, we
use the video sequences and scale down the resolution four
times through Photoshop, yielding a video sequence with a
resolution four times lower than before. The use of DWT in
this down-scaled image is similar to using the LL2 subband
which is four times smaller than the original image. We use
the LL3 subband of the smaller image for encoding, equivalent
to using LL4 for the original image. The frequencies in all
other subbands are estimated based on their relationship to
the frequencies in LL3 of the sub-sampled image and a DWT
image with higher frequency content is reconstructed. Example
frames from two video sequences are shown in figure 6. The
quality measured in PSNR when M=25 for the video sequences
and the quality yielded by images scaled with interpolation are
shown in table VI. We use grayscale images in this experiment
so it can be compared to the previous experiment but not the
first two experiments.

IV. DISCUSSION AND CONCLUSIONS

It can be seen from the experiments in section III-B and
III-C that the quality is reduced when the video content is
diverse and based on the facial expressions by several different
persons but as can be seen from the resulting images, (Figure
3), the image quality is still very high.

Zooming beyond the existing resolution essentially means
creating a version of the image with a higher resolution
than the original image. So the zooming experiment and the
creation of SR image experiments basically show the same
capability. The zooming experiment is included to highlight
the techniques capacity for such a task.

A possible improvement is to divide the database into

847



Fig. 6. Zooming 4 times in both direction (16 times zoom). (left)=Original
images (middle)=zoomed with interpolation (right)=zoomed with aPCA-DWT.

gender and ethnicity. At present, we have limited our material
to six video sequences and we use them all in a single database
to create a reasonably large data set. The results will be
much improved if the database is divided based on gender
and/or ethnicity; i.e. different databases for males, females and
different ethnic backgrounds. Our videos consist of images of
males and females, Caucasians and Asians. Previous research
by Kirby and Sirovich has shown how modeling of faces
through PCA works well if the database is divided into such
categories [14].

The technique can easily be used to remove noise from an
image. A simple way for noise removal is to low-pass filter the
image but this also means that the sharp edges in the image
are blurred. A low frequency version of an image, without
noise, can be used to estimate a high frequency version of the
image meaning that it is possible to remove noise with low-
pass filtering and estimate a high frequency image without
noise.

The PSNR values in experiment III-D and III-E are calcu-
lated based on grayscale images while experiment III-B and
III-C use color images. We have found that the result is poor
for the blue color channel but the result is still shown as an
average for the three color channels. Should they be presented
individually, it could be seen that the red and green color
channels produce higher quality results than the blue channel.

It is not really possible to see the improvement of aPCA-
DWT from figure 2 but the objective quality in table II clearly
states that our method outperforms the results that Yang et.al
have. Their method is however more general, works with
several different kinds of images and is not data dependent.
Our method only works for facial images and only for images
which are similar in size and shape. This is something that
needs to be addressed in future work.

The most important future work for this research is to
create a more general model than the one used in this article.
The present model can be used to estimate higher frequencies
based on specific frequency content. This means that the model
can only estimate higher frequencies for certain objects; in this

work we have used head-and-shoulders images. With a general
model, higher frequencies can be created based on shapes,
edges or any kind of objects in the image. This will probably
require that the image is divided into subparts, a solution we
are currently working on. Another possible solution is to have

several models for known objects. If the video shows a tree,
one model is used, if it shows a car, a second model is used,
and so on.

The last experiment clearly shows how accurately the
technique works when a correct model exists. With accurate
models for specific kinds of images it will be possible to
create SR versions of such images. With a carefully designed
general model the method could be used for any kind of image,
opening up a vast array of possibilities.
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