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Abstract—Scene acquisition using RGB and Near Infra-Red
(NIR) filters generates useful visual information about scene
contents. But it induces significant intensity and textural changes
between RGB and NIR images of the same scene. It becomes
a challenging problem to perform interest point based image
matching under such intensity and textural changes. To cope with
this problem, a novel method for the description of interest points
is proposed. The method proposed is based on Center Symmetric-
Local Binary Patterns (CS-LBP) which extracts distinct image
features from intensity and gradient magnitude maps of the
image patches centered at interest points. Those features are then
used in the SIFT algorithm to compute robust descriptors against
intensity and textural changes. The experimental results show that
the method proposed improves the descriptor matching between
RGB and NIR images and achieves better image matching results
than CS-LBP and SIFT based methods for the description of
interest points.

I. INTRODUCTION

Scene acquisition using Red-Green-Blue (RGB) and Near
Infra-Red (NIR) filters generates distinct visual information
about scene contents [1]. This information is used in scene
category recognition [1], remote sensing [2], biometric au-
thentication [3] and visual surveillance [4] to solve the visual
computing problems related to these applications efficiently.
But such a scene acquisition induces significant intensity
changes between RGB and NIR images and makes RGB-NIR
image matching a challenging problem. In Figure 1 an image
pair is shown in this regards to illustrate the intensity changes
between RGB and NIR images. The scene contents in the
image pair shown are same but due to high intensity changes
the same scene contents appear significantly different. This
also induces significant differences between the interest point
descriptors and affects the image matching between RGB and
NIR images. To cope with these problems a novel method for
the description of interest points is proposed.

Several methods in this regards have been also proposed
in the literature which are useful in this work in order to
compute robust interest point descriptors for RGB-NIR images.
Among these methods, the Scale Invariant Feature Transform
(SIFT) [5] has been widely used and found more effective
under intensity changes [6], [7]. The key to success for SIFT
lies in image gradients which are used as features in the
description of interest points. The image gradients not only

make SIFT robust to intensity changes but also improve its
robustness towards scale, rotation and affine changes [5], [8].

To improve the SIFT performance further, several modi-
fications have been also proposed. For instance, Mikolajczyk
and Schmid propose Gradient Location-Orientation Histogram
(GLOH) [8] and show better descriptor matching results
by computing SIFT on a log-polar location grid instead of
cartesian location grid [5]. Heikkilä et al. [9] use the same
cartesian location grid of SIFT but achieve robustness against
intensity changes by replacing the image gradients in the SIFT
algorithm with Center-Symmetric Local Binary Patterns (CS-
LBP). Similarly, Wang et al. [10] use Local Intensity Order
Patterns (LIOP) as image features in the intensity order based
location grid and show better descriptor matching results under
intensity changes.

Yi et al. [6] use a Gradient Orientation Modification
(GOM) and restrict the domain range of gradient orientations
between 0 and π radians to compute GOM-SIFT descriptors
under intensity changes. They show an improvement of 7.04%
in the correct match rate for GOM-SIFT over SIFT. However,
Vural et al., [7] show that GOM on one hand improves
SIFT robustness towards intensity changes but on the other
hand it effects the rotation invariance. To deal with this
problem they propose Orientation Restricted (OR)-SIFT [7].
They compute SIFT descriptors and then combine the elements
of SIFT descriptors in the opposite orientation directions to
obtain OR-SIFT descriptors. They show better image matching
results under intensity reversal and intensity changes than
SIFT and GOM-SIFT. Saleem and Sablatnig [11] show that
intensity changes result in more gradient magnitude changes
than gradient orientation changes. Instead of modifying the

Fig. 1. Illustration shows intensity changes between RGB (left) and NIR
(right) images when the same scene is acquired using RGB and NIR filters [1].
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Fig. 2. Illustration shows the description of an interest region based on proposed LIGM method.

gradient orientations, better results are obtained when mod-
ification of gradient magnitudes is used. To that end, they
propose Local Contrast (LC) magnitudes [12] and Differential
Excitation (DE) magnitudes [13] as features instead of gradient
magnitudes to compute more robust LC-SIFT [11] and DE-
SIFT [11] descriptors under intensity changes.

However, in Local Binary Pattern of Gradients (LBPG) [14]
method, it is shown that both components of the image
gradients need a modification to cope with intensity changes.
For modification, the CS-LBP [9] approach is used which
computes LBPGρ and LBPGφ features from the gradient
magnitude (ρ) and gradient orientation (φ) maps around the
interest points for descriptor construction respectively. It is
shown [14] that by using the LBPG features in the SIFT
algorithm result in better descriptor matching performance
under intensity changes than OR-SIFT and CS-LBP.

Our proposed Local binary patterns of Intensity and Gradi-
ent Magnitude (LIGM) method is based on both CS-LBP [9]
and LBPG [14] methods. In the method proposed they are
used to compute LIGM descriptors in order to achieve better
image matching results between RGB-NIR images. To that
end, in the method the CS-LBP approach is first applied on
the magnitude map of image gradients and LIGMρ features
are computed according to the LBPG [14] method. Then
instead of computing features from the orientation map of
image gradients in the method proposed the LIGMi features
are computed by applying the CS-LBP approach on image
intensity compared to LBPG [14] method.

The idea is to overcome the instability associated with
the LBPGφ features [14] which occurs due to the cyclic
nature of gradient orientations that makes 0 radian equal to 2π
radians near the orientation boundary. This instability results
in unstable LBPGφ features and effects the description and
the descriptor matching of the interest points. However, in the
LIGM method proposed such cyclic problems do not occur.
To evaluate the performance of LIGM, the RGB-NIR pairs of
52 different scenes are used. The experimental results show
better descriptor matching results for LIGM than SIFT, CS-
LBP and LBPG methods for image matching between RGB-
NIR images.

The rest of the paper is structured as follows. In Section II
the LIGM approach is described. In Section III the experi-
mental setup and results are presented. Finally, the paper is
concluded in Section IV.

II. PROPOSED METHOD

In Figure 2 the proposed LIGM method is illustrated. In
the following sections, each building block of the illustration
is described.

A. Interest Region

Harris Laplace interest points [8] are used in this paper
as feature points to compute LIGM descriptors. These feature
points are invariant to scale and rotation changes. They are
based on Harris function with scale adaption [15]. In the
method proposed the scale of each Harris Laplace interest
point is used to select an image patch centered at the interest
point for descriptor construction. The patch is then intensity
normalized and resized to a new region of size 41 × 41
pixels. This region is referred to as an Harris Laplace (HarLap)
interest region [8].

In Figure 3 the computation of an HarLap region is illus-
trated. An image patch centered at an Harris Laplace interest
point ’+’ is shown inside a bounding box. The patch is cropped,
resized and intensity normalized in the method proposed to
obtain an HarLap region which is shown in Figure 3(c).

B. CS-LBP

CS-LBP is a gray level invariant texture primitive [9]. It
converts the pixel gray levels into binary patterns through a
center symmetric pixel subtraction scheme as described in
Equation 1 where ni denotes N number of equally spaced
samples at a radius of R from a central pixel nc. The gray level
of each ni is subtracted from its center-symmetric neighbor
ni+(N/2) and the difference is binarized through s(z) function
as described in Equation 2. The binarized values are then

(a) (b) (c)

Fig. 3. Illustration shows (a) an image patch centered at a Harris interest
point which is depicted with a ’+’ sign (b) the patch is cropped from the image
and (c) it is resized and intensity normalized to obtain a 41×41 pixels HarLap
region. In the LIGM method proposed, the HarLap region is then divided into
4×4 location bins [5] for descriptor construction.
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(a) p1 (b) p2 (c) p3

(d) p4 (e) p5 (f) p6

Fig. 4. A subset of scenes from evaluated Country Category of the RGB-NIR Scene dataset [1]. For each scene an RGB (left) and an NIR (right) image are
shown.

multiplied by 2i and summed over all N/2 center symmetric
pairs to obtain a CS-LBP feature for nc. This process is
repeated for each and every image pixel by setting it as a
central pixel nc. The parameter N generates 2N/2 distinct CS-
LBP features and the radius R is usually kept small [9].

CS-LBPR,N =

(N/2)−1∑
i=0

s(ni − ni+(N/2))2
i (1)

s(z) =

{
1 z ≥ 0.01

0 otherwise
(2)

In the method proposed, the CS-LBP scheme is used twice.
First it is applied on the intensity map of the HarLap region
and LIGMi features are computed. Then the same process is
repeated on the gradient magnitude map of the HarLap region
and LIGMρ features are computed.

C. Feature Histograms

LIGMi and LIGMρ features are then sampled by using
the grid like feature histogram scheme of SIFT [5] and two
descriptors for an HarLap region are computed i.e. LIGMi and
LIGMρ. To that end, the HarLap region is divided into 4×4
location bins as illustrated in Figure 3(c). For each location bin
a feature histogram is computed by using the LIGMi features
of the location bin and then features histograms over all
location bins are concatenated to obtain an LIGMi descriptor
for the HarLap region. The same process is then repeated for
LIGMρ features and a LIGMρ descriptor for the HarLap region
is obtained as illustrated in Figure 2.

D. LIGM Descriptor

In this paper, R = 2 and N = 6 are used in Equation 1.
These parameters results in LIGM2,6 descriptors for the Har-
Lap regions. The parameter N generates 26/2=8 number of
bins for each feature histogram and the concatenation of such
feature histogram results in a vector of length 4×4×8=128
for both LIGMi and LIGMρ descriptors. By concatenating
these two descriptors, a LIGM2,6 descriptor vector of length
128+128=256 is obtained for the HarLap region. The LIGM2,6

descriptor vector is normalized to unit length, the vector
elements are thresholded to 0.2 value and the vector is re-
normalized to unit length [5].

III. EXPERIMENTAL RESULTS

This section presents experimental setup and results. All
results presented are based on image matching between RGB-
NIR images. The image matching is performed between pairs
of RGB and NIR images of the same scene using LIGM2,6,
SIFT, GLOH, CS-LBP2,8, LIOP, GOM-SIFT, OR-SIFT, LC-
SIFT, DE-SIFT and LBPG2,6 descriptors.

A. Image Dataset

In this paper the images of Country Category Scenes (CCS)
of the RGB-NIR Scene Dataset1 [1] are used. This category
consists of RGB-NIR image pairs of 52 different scenes. A
subset of scenes belonging to CCS is shown in Figure 4 where
an RGB-NIR image pair for each scene is shown. Each pair
shows high intensity changes between RGB and NIR images.

B. Image Matching

To perform image matching, the gray scale version of the
RGB image is used and set as a reference to perform its
image matching with the NIR image (target) of the same scene.
HarLap regions are computed from reference and target images
as described in Section II-A. Then LIGM2,6, SIFT, GLOH, CS-
LBP2,8, LIOP, GOM-SIFT, OR-SIFT, LC-SIFT, DE-SIFT and
LBPG2,6 descriptors are constructed. The image matching is
then carried out by performing descriptor matching between
the reference and target images based on three different
descriptor matching strategies [8]: (i) distance threshold td (ii)
nearest neighbor tn and (iii) distance ratio tr.

C. Evaluation Criteria

The performance evaluation is based on number of correct
and false descriptor matches which are obtained from each
descriptor matching strategy in order to compare the perfor-
mance of LIGM2,6 with others. In each descriptor matching
strategy, a descriptor match is considered correct or false based
on an overlap error (εs) [8]. This error measures how well
two HarLap regions A and B correspond under a known
homography H and is computed as ratio of the intersection
to the union of the regions [8]:

εs = 1− (A ∩HTBH)/(A ∪HTBH). (3)

1http://ivrg.epfl.ch/supplementary material/cvpr11/index.html
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Fig. 5. Results for RGB-NIR image matching for six different scenes which are shown in Figure 4. The AUC value achieved by each descriptor in each image
matching is shown inside brackets in the figure legend.

In this paper, εs < 0.5 [8] is used. Then the following
measures based on number of correct and false matches are
computed [8]:

Precision =
num correct matches

num all matches
(4)

Recall =
num correct matches

num correspondences
(5)

where num correspondences represents the number of corre-
sponding HarLap regions between reference and target images
which are obtained by using the εs < 0.5 criterion. The
num all represents the sum of correct (num correct) and
false matches. In addition to these measures, the Area Under
a Precision–Recall Curve (AUC) is also computed and used as
a single valued measure for performance comparison.

D. Distance threshold based descriptor matching

In distance threshold (td) based descriptor matching strat-
egy, a correct match is declared if the Euclidian distance
between two descriptors is below a distance threshold and their
HarLap regions fulfill the εs < 0.5 criterion [8]. By changing
the distance thresholds a Precision-Recall curve is computed
for each descriptor. Please note, td is a one to many descriptor
matching strategy which allows a descriptor of the reference
image to find several matches in the target image and several
of them may be correct if they fulfill the td based descriptor
matching criteria.

In Figure 5 the results for td based RGB-NIR image match-
ing are shown. The results show Precision-Recall curves which

are generated separately for six different scenes of Figure 4.
To understand the results consider the image matching results
for p1 scene which is shown in Figure 5(a). The results are
based on 176 number of corresponding HarLap regions which
are computed by applying the ε < 0.5 criterion on HarLap
regions of RGB-NIR images of p1.

For a point (Recall, Precision)=(0.2, 0.1) on the proposed
LIGM2,6 descriptor performance curve in Figure 5(a), the
number of correct and false matches can be computed as
0.2×176 = 36 and 36/0.1−36 = 324 respectively. Similarly,
the number of correct and false matches can also be computed
for other descriptors at any point on their performance curves
in Figure 5(a) in order to compare their performance mea-
sures with LIGM2,6. The results show that LIGM2,6 proposed
achieves an AUC of 0.141 (shown inside brackets in the figure
legend) and outperforms others for matching between RGB-
NIR images of p1. Similarly, other image matching results
which are shown in Figure 5 also show better image matching
results for LIGM2,6 compared to other descriptors.

In Figure 6(a), the average Precision-Recall curves for td
based image matching are shown when all RGB-NIR image
pairs of CCS are considered. The results are based on 443
number of corresponding HarLap regions which represents
an average value and is computed by using ε < 0.5 for all
image pairs of CCS to perform RGB-NIR image matching. The
results show better Precision-Recall curve for LIGM2,6 pro-
posed compared to others. These td based average Precision-
Recall measures show that the LIGM features which are
used as image features for the construction of LIGM2,6 are
more robust to intensity changes than image gradients, CS-
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Fig. 6. Average results for RGB-NIR image matching when all RGB-NIR image pairs of the CCS are considered for matching.

TABLE I. AVERAGE AUC(%) VALUES WHEN ALL RGB-NIR IMAGE PAIRS OF THE CCS ARE CONSIDERED FOR MATCHING.

Matching SIFT LC-SIFT DE-SIFT CS-LBP LBPG OR-SIFT GOM-SIFT GLOH LIOP Proposed

Distance Threshold td 18.6 18.4 18.0 18.7 18.9 16.1 15.2 15.1 06.5 21.7
Nearest Neighbor tn 42.1 41.2 40.1 39.8 44.6 40.3 37.8 37.1 17.2 45.7
Distance Ratio tr 35.3 34.8 32.9 31.9 37.4 35.2 31.9 32.3 15.2 37.0

LBP and LBPG features and result in better RGB-NIR image
matching compared to other descriptors. In Table I, the average
AUC (%) values are summarized for td based RGB-NIR
image matching when all RGB-NIR image pairs of CCS are
considered. The results show best average AUC of 21.7%
for LIGM2,6 proposed which is 3.1%, 3% and 2.8% better
than SIFT, CS-LBP2,8 and LBPG2,6 respectively. The results
show the lowest AUC value of 6.5% for LIOP in the td based
matching. It suggests that the interest point description based
on intensity distribution is less effective due to high intensity
changes between RGB-NIR images.

E. Nearest neighbor based descriptor matching

In nearest neighbor (tn) based descriptor matching strategy,
a nearest neighbor for each descriptor of the reference image
is computed in the target image. Then the match is considered
correct if εs < 0.5 and the Euclidean distance between descrip-
tor and its nearest neighbor is below a distance threshold [8].
By changing this distance threshold Precision-Recall curves
are computed. The tn based matching computes only a single
match for each descriptor of the reference image in the target
image compared to the td based matching.

The average Precision-Recall curves for tn based matching
are shown in Figure 6(b) when all RGB-NIR image pairs
of CCS are considered. The results show better Precision-
Recall measures for LIGM2,6 proposed compared to others.
The average AUC(%) values which are shown in Table I
show 3.6% and 5.9% better results for LIGM2,6 compared
to SIFT and CS-LBP2,8. However, the results show a slight
performance improvement for LIGM2,6 over LBPG2,8 for tn
based matching. This shows that the nearest neighbors of
LIGM2,6 in RGB-NIR image matching are more robust under
intensity changes compared to others.

F. Distance ratio based descriptor matching

In distance ratio (tr) based descriptor matching, the dis-
tance ratio between nearest and second nearest neighbor is

computed. If this ratio is found below a threshold and the
εs < 0.5 criterion is satisfied then the match is declared
correct [8]. By changing the distance threshold Precision-
Recall curves are computed.

The average results for tr based RGB-NIR image match-
ing are shown in Figure 6(c). The results show that in tr
based matching SIFT performs better than LIGM2,6 proposed
between 0 and 0.3 recall. Afterwards, the performance of
LBPG2,6 becomes superior to SIFT and LIGM2,6. The average
AUC(%) values in Table I show that LIGM2,6 proposed
achieves 1.7% and 5.1% better AUC than SIFT and CS-LBP2,8

in the tr based matching respectively but compared to LBPG2,6

it shows 0.4% inferior results.

G. Discussion

In Figure 7, the AUC values are plotted when all RGB-
NIR image pairs of the CCS are considered for td, tn and tr
based matching. In each plot the median AUC value is shown
as ’-’ whereas the edges of the box represent the 25th and 75th
percentile AUC values and the vertical lines are extended to the
most extreme cases. From the results shown it can be noted
that the LIGM2,6 proposed achieves better results for RGB-
NIR image matching than other descriptors. The descriptors
based on orientation modification like GOM-SIFT and OR-
SIFT do no show better performance compared to LIGM2,6

for RGB-NIR image matching. Also the gradient magnitude
modification based descriptors like LC-SIFT and DE-SIFT
show lower performance measures compared to LIGM2,6.
The results also show the effects of intensity changes on the
performance measures of GLOH and CS-LBP.

LIOP which uses intensity based approach for the descrip-
tion of interest points shows the least performance compared
to intensity difference (image gradient) based descriptors.
LBPG2,6 comparatively shows better results which suggests
that modification of both components of image gradients
i.e. magnitude and orientation generates more robust image
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Fig. 7. AUC based results when all RGB-NIR image pairs of CCS are considered for image matching based on distance threshold td, nearest neighbor tn and
distance ratio tr based descriptor matching strategies. In each plot the median AUC value is depicted with ’-’, the edges of the box represent the 25th and 75th
percentile values and the vertical lines are extended to the most extreme cases.

features which results in better RGB-NIR image matching
compared to others. In this paper this matching performance is
further improved by using the proposed LIGM method which
combines the CS-LBP features with its gradient magnitude
extensions in order to compute robust interest point descriptors
to achieve better RGB-NIR image matching results.

IV. CONCLUSION

A novel method for the description of interest points is
proposed. The method proposed is based on Center Symmetric
Local Binary Patterns (CS-LBP) to cope with high intensity
changes between RGB-NIR images. Such intensity changes
effect the performance of SIFT and CS-LBP and result in low
image matching results. To deal with these problems LIGM
features are proposed which are used in the SIFT algorithm
instead of image gradients to compute robust LIGM descrip-
tors. To evaluate the performance of LIGM, image matching
was performed on RGB-NIR image pairs of 52 different
scenes based on three different descriptor matching strategies:
distance threshold, nearest neighbor, and distance ratio. The
experimental results showed better image matching results for
LIGM in each descriptor matching strategy compared to SIFT
and CS-LBP.

ACKNOWLEDGMENT

The financial support provided by the Vienna PhD School
of Informatics, Austria is gratefully acknowledged.

REFERENCES

[1] M. Brown and S. Susstrunk, “Multi-spectral SIFT for scene category
recognition,” IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 177–184, 2011.

[2] F. Bovolo, S. Marchesi, and L. Bruzzone, “A framework for automatic
and unsupervised detection of multiple changes in multitemporal im-
ages,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50,
no. 6, pp. 2196–2212, 2012.

[3] Z. Guo, D. Zhang, L. Zhang, and W. Liu, “Feature band selection
for online multispectral palmprint recognition,” IEEE Transactions on
Information Forensics and Security, vol. 7, no. 3, pp. 1094–1099, 2012.

[4] A. Leykin and R. Hammoud, “Pedestrian tracking by fusion of thermal-
visible surveillance videos,” Machine Vision and Applications, vol. 21,
no. 4, pp. 587–595, 2010.

[5] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[6] Z. Yi, C. Zhiguo, and X. Yang, “Multi-spectral remote image registra-
tion based on SIFT,” Electronics Letters, vol. 44, no. 2, pp. 107–108,
2008.

[7] M. Vural, Y. Yardimci, and A. Temizel, “Registration of multispectral
satellite images with orientation-restricted SIFT,” IEEE International
Geoscience and Remote Sensing Symposium, vol. 3, pp. 243–246, 2009.

[8] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005.

[9] M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of interest
regions with local binary patterns,” Pattern Recognition, vol. 42, no. 3,
pp. 425–436, 2009.

[10] Z. Wang, B. Fan, and F. Wu, “Local intensity order pattern for feature
description,” International Conference on Computer Vision, pp. 603–
610, 2011.

[11] S. Saleem and R. Sablatnig, “A modified SIFT descriptor for image
matching under spectral variations,” International Conference on Image
Analysis and Processing, pp. 652–661, 2013.

[12] B. Su, S. Lu, and C. L. Tan, “Binarization of historical document images
using the local maximum and minimum,” IAPR International Workshop
on Document Analysis Systems, pp. 159–166, 2010.

[13] J. Chen, S. Shan, C. He, G. Zhao, M. Pietikainen, X. Chen, and W. Gao,
“WLD: a robust local image descriptor,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1705–1720, 2010.

[14] S. Saleem and R. Sablatnig, “Interest region description using local bi-
nary pattern of gradients,” Scandinavian Conference on Image Analysis,
pp. 468–477, 2013.

[15] K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant
interest points,” International Conference on Computer Vision, vol. 1,
pp. 525–531, 2001.

820


