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Abstract—We consider the problem of brain tumor seg-
mentation from magnetic resonance (MR) images. This task is
most frequently tackled using machine learning methods that
generalize across brains, by learning from training brain images
in order to generalize to novel test brains. However this approach
faces many obstacles that threaten its performance, such as the
ability to properly perform multi-brain registration or brain-atlas
alignment, or to extract appropriate high-dimensional features
that support good generalization. These operations are both non-
trivial and time-consuming, limiting the practicality of these
approaches in a clinical context. In this paper, we propose to side
step these issues by approaching the problem as one of within brain
generalization. Specifically, we propose a semi-automatic method
that segments a given brain by training and generalizing within
that brain only, based on some minimum user interaction. We
investigate how k nearest neighbors (kNN), arguably the simplest
machine learning method available, combined with the simplest
feature vector possible (raw MR signal + (x,y,z) position) can be
combined into a method that is both simple, accurate and fast.
Results obtained on the online BRATS dataset reveal that our
method is fast and second best in terms of the complete and core
test set tumor segmentation.

I. INTRODUCTION

It is estimated that worldwide, more than 12 million
new cancer cases occur every year and more than 7 million
people will die from it (that is about 21,000 cancer deaths a
day) 1. Brain cancer is among the most aggressive ones with
a survival rate after 5 years of less than 25%. Statistics are
even more severe when considering malignant glioblastomas
whose survival rate rarely exceeds more than 20 months. With
devastating effects on the quality of life and potential cognitive
impairments, often the only solution is to remove the tumor
with an operation.

Magnetic resonance imaging (MRI) is the most widely used
modality for brain tumor analysis. In current practice, using an
MRI and sometimes with the help of a biopsy, a doctor would
diagnose a tumor to be benign or malignant and can follow its
evolution in time as well as the treatment that goes with it. The
best way of doing so is by measuring the size and the shape
of the tumor with a segmentation method. But segmentation
is often done entirely manually, which is a very tedious and
time consuming task [1].

Many methods have been proposed to simplify brain tumor
segmentation. While some methods rely on human interven-
tion, others are fully automatic. Automatic methods (which
often use a machine learning approach) are quite popular
and have been proven to be efficient, even on challenging
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Fig. 1. Illustration of the brain segmentation task from MR images.
Left: T1c and T2 modality images. Right: ground truth tumor segmentation
(BRATS2013 dataset) [4].

data [1]. The advantage of these automatic methods is that once
training is done, any new brain is processed without human
intervention. However, these methods suffer from important
limitations. First, these methods train on multiple brain sub-
jects, for which data might have been gathered from different
MRI scanners. This is problematic since the intensities of
MR images are not standardized across MRI scanners. Also,
manually segmented brain images for training are not so fre-
quent and require lots of man power to build. Other obstacles
include inter-slice intensity variations, differences in the noise
produced by different MRI scanners, tumors-related problems
when registering and aligning images, etc. To overcome the
above mentioned problems, many pre-processing steps are
needed, which usually require a lot of tuning effort [2]. Also,
some methods rely on features that are so high-dimensional
that they can hardly be stored in memory [3]. As for semi-
automatic methods go, they often require a lot of user inter-
vention and usually do not perform well [1].

In this paper, we consider the specific problem of seg-
menting an imaged brain into 4 classes: edema, non-enhancing
tumor, enhancing tumor and healthy tissue (see Fig. 1). Note
that the non-enhancing tumor sometimes include necrotic
tissue. Our approach is halfway between automatic and semi-
automatic methods. While machine learning methods train on a
pre-selected set of brains and then generalize to testing brains,
our method implements a “single brain” supervised learning
method. The user roughly selects brain voxels associated to
each class and then these voxels are used as training data. The
method then generalizes by labeling non-selected voxels.
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The main characteristics of our method are as follows:

• Since it treats each brain as a separate dataset, it is
immune to the multi-MRI disadvantages mentioned
above.

• Although it uses only 6 simple features and relies
on kNN (the simplest machine learning approach
available) it produces highly accurate results.

• The entire process for a 240× 240× 168 brain takes
approximately 1 minutes on Matlab which is much
faster than most state-of-the-art methods.

II. RELATED WORK

Brain tumor segmentation methods can be divided in two
great families : interactive (or semi-automatic) methods and
automatic methods.

Interactive methods are those relying on user intervention.
Many of these methods rely on active deformable models
(e.g. snakes). For these methods, the user initializes a contour
around the region of interest, i.e. the tumor. The active contour
then converges slowly to its closest optimal configuration. It
is assumed that the global minimum energy is achieved when
the contour reaches the borders of the tumor. Jiang [5] uses a
level set method to perform tumor segmentation. Wang [6]
proposed the fluid vector flow active contour model that
improves its capture range in MR images. Efforts have been
made to initialize the contour automatically and therefore
eliminate the need for human interaction. Ho [7] used the
difference between pre and post contrast T1 together with a
mixture of Gaussians (GMM) to compute a probability map
for the tumor, which can be used to automatically initialize
the active contour. Rexilious [8] initializes the segmentation
by a tumor probability map based on global cross subject
intensity variability, which is achieved by histogram matching.
One problem with deformable models is that they are highly
dependent on the image gradients and if the tumor region
does not have well defined borders, they are likely to fail.
Also, strong gradients from surrounding objects may attract the
active contour in the wrong direction. Moreover, it is not trivial
to integrate multiple MRI modalities into these algorithms.
Also, since snakes and level set methods are fundamentally 2-
class segmentation methods, it is non trivial to make it segment
N > 2 classes as is often required for tumor segmentation.

As for automatic methods, they are often based on machine
learning classification techniques [1]. The choice of features
can then play a crucial role in the ability of the method to gen-
eralize well. For example, Jenson [9] combined morphological,
diffusion weighted and perfusion weighted features to train a
two hidden layer neural network classifier across patient brains.
Other methods have used random forests for classification.
Reza [10] used T1, T2 and FLAIR along with other intensity
and texture features. They trained a classical random forest
model to perform classification on this feature space. Festa [3]
used series of intensity based features, texture features and
neighborhood information features. A total of 300 features
were computed. Classical decision forest comprising of 50
trees is trained on this feature space. Tustison [11] constructed
a large feature space using first order neighborhood statistical
images, GMM and Markov Random Field (MRF) posteriors,

and template differences. The advantage of machine learning
classification methods is that it is possible to integrate many
features, even if they are redundant. The drawback is that they
can be vulnerable to overfitting, which is a likely possibility
when generalizing across different brain images.

Classification methods can be further improved by mod-
eling the spatial dependencies between voxel labels, typically
with an MRF or a Conditional Random Field (CRF). Lee [12]
performed 2-class segmentation (tumor vs. non-tumor) using
an SVM and a variation of conditional random fields to
account for neighborhood relationships. Nie [13] proposed an
automatic method using a GMM, where Iterated Conditional
Modes (ICM) is used to incorporate spatial relationships.
Bauer [14] used a kernel SVM for multiclass segmentation
of brain tumors, where a CRF is used to regularise the results.
Meier [2] used density forests and classification forests in a
generative-discriminative framework. Having found the poste-
rior probabilities, they used a CRF to incorporate similarity
between the probability distribution of neighboring voxels.
Zhao [15] proposed a method based on histogram matching.
Using T1c, T2 and FLAIR modalities they built a 3D joint
histogram. At test time, the likelihood for every voxel is
computed by registering the test brain to every training brain
and performing histogram matching. The likelihood is later
used in a CRF to perform segmentation.

While our method falls squarely within semi-automatic
methods, it shares with automatic methods the use of a
machine learning classification algorithm, ran on a feature
representation of voxels and improved by a spatial dependency
model. The main difference is that generalization is performed
within each brain, based on the training data provided by
the user’s interaction. This simplified generalization problem
allows us to use a very simple feature space, yielding an
interactive segmentation method that is very fast and effective.
Vaidyanathan [16] used a similar, semi-automatic, kNN classi-
fication mehtod, applied to proton density, T1 and T2 modal-
ities. Cai [17] also proposed a semi-automatic segmentation
method that uses instead Quadratic Discriminative Aanalysis
to perform multi-class segmentation. However, they did not
use the (x,y,z) voxel positions as features (see Section III-B)
nor did they deal with label spatial dependency modeling (see
Section III-C), which we’ve found to both play a crucial role
in obtaining competitive performances.

III. OUR METHOD

In this section, we describe the different components of
our approach. Specifically, we explain the voxel feature rep-
resentation we used, how kNN classification was performed
using the user interaction labeled data and which spatial label
dependency models we investigated.

A. Feature representation and manual selection

We considered the use of 3 MRI modalities, known as
contrasted T1 (T1 with gadolinium), T2 and FLAIR (extension
to a different set of modalities is trivial). These are co-
registered and stored as separate channels in a 3rd-order tensor
image I , where each voxel in I is a 3D vector containing all 3
modalities. Let I1v , I

2
v , I

3
v be the 3 modalities for a given voxel

v. Our goal is to use a machine learning classifier to predict
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the voxel label Tv from a feature representation of voxel v. We
thus need to convert each such voxel v into an N -dimensional
feature representation Fv .

We propose to use a very simple feature representation,
consisting in all 3 values of v under the MRI modalities as
well as the 3D relative position of v: Fv = (I1v , I

2
v , I

3
v , x, y, z).

These features are normalized between 0 and 1.

To collect voxel label data for a given brain image to
segment, the first step of our method is then for the user to
roughly select a subset of voxels associated with each class.
This is done through a graphical interface. We will note as
B the binary mask such that Bv ∈ {0, 1} indicates whether
a voxel v has been manually selected (i.e. labeled) or not. T
will then be the class-selection mask where Tv ∈ {edema,
non-enhancing tumor, enhancing tumor, healthy} is the class
label associated with the voxel v by the user.

At this point, from each selected voxel, we can generate a
training pair (Fv, Tv) and construct a training set D that we
shall use to classify the non-selected voxels using a classifier.

B. Voxel classifier

Once manual selection is done and each voxel has been
assigned a 6D feature vector, the goal is to generalize to
non-selected voxels, that is to classify those voxels for which
Bv = 0. One of the simplest classifier is arguably the k
nearest neighbor (kNN) classifier. For each non-selected voxel
v, we first consider Nv , the set of k nearest neighbors of Fv

among the training voxels, irrespective to their class label. Let
Nv = ((Fv1, Tv1), (Fv2, Tv2), ..., (Fvk, Tvk)) where Fvi is the
ith closest training point of Fv. The kNN classification rule
assigns a class label to some voxel v following this equation

Tv = argmax
c

1

k

∑
(Fvi,Tvi)∈Nv

δ(Tvi, c) (1)

where c is a class label and δ(a, b) returns 1 when a = b and
0 otherwise. We refer to the segmentation method classifying
each voxel independently in this way as simply kNN.

As stated earlier in Section III-A, we rely on a simple 6D
voxel feature representation to perform this classification. This
has the important advantage of allowing for very efficient pre-
dictions, compared to using hundreds of features. In contrast
to automatic methods, this might seem like an over-simplistic
feature representation. However, the use of a simplified feature
set is made possible by the fact that we only attempt to
generalize within a given brain, as opposed to across a different
brain image. Indeed, this later type of generalization is much
harder, as it requires being robust to variations related to
changes in MRI scanner or registration/alignment procedures,
unlike in within brain generalization.

Relying on within brain generalization is also what allows
us to use the voxel 3D relative positions as features (these
would obviously not be useful across brains). This is proba-
bly why spatial coordinate features are rarely used in other
systems. Yet, we’ve found these features to play a crucial
role in obtaining good segmentation performances. They allow
segmented regions to be locally grounded around the user-
labeled voxels and not produce false positives far away from
the tumor.

C. Spatial label dependency models

As mentioned earlier, segmentation accuracy can easily be
improved by leveraging a model of the 3D spatial regularity of
labels. We describe here two such models that we considered
in our experiments.

1) Markov Random Fields (MRF): One way of enforcing
spacial regularity is through an MRF formulation. Let F be the
set of features Fv and T be the set of labels Tv , for all voxels
v. A common MRF model for the joint distribution P (F, T )
is one that decomposes as follows:

p(F, T ) = P (F |T )P (T ) = P (T )
∏
v

P (Fv|Tv) (2)

=
1

Z

∏
v

exp

(
V (Fv, Tv) +

∑
r∈ηv

W (Tv, Tr)

)

where ηv corresponds to the 6 voxel spatial neighbors of v
in 3D, Z is a normalization constant, and V (Fv, Tv) and
W (Tv, Tr) are likelihood and prior energy functions. One can
associate with this distribution a graph in which the labels
Tv are organized into a 3D grid where each Tv is connected
to its neighbors ηv as well as to its associated feature vector
node Fv . A property of this MRF is then that it satisfies the
local Markov property given by that graph, whereby a node is
independent of all others given its neighbors [18].

The role of the energy functions V (Fv, Tv) and W (Tv, Tr)
is to express preferences for the assignment of the variables in
the graph. Following section III-B, a good choice for deriving
our preferences for the values taken by a pair (Fv, Tv) is
our kNN classifier, which can serve as a simple but efficient
likelihood energy function:

V (Fv, Tv) = − log

⎛
⎝1

k

∑
(Fvi,Tvi)∈Nv

δ(Tvi, Tv)

⎞
⎠ (3)

where Nv contains the k nearest neighbors of Fv (gathered
within the training dataset D). As for W (Tv, Tr), we use a
Potts model which returns 0 when Tv = Tr and β (a hyper-
paramter) otherwise. This can be formulated as

W (Tv, Tr) = β(1− δ(Tv, Tr)) (4)

Segmenting a brain image can then be formulated as the
problem of finding the most likely value for all labels Tv

that have not be selected and labeled by the user, given the
voxel features. Noting T as the set of label assignments that
are consistent with the user labeling, segmentaiton is thus
equivalent to

T = argmax
T∈T

P (T |F ) = argmax
T∈T

P (F, T )

= argmin
T∈T

∑
v

(
V (Fv, Tv) +

∑
r∈ηv

W (Tv, Tr)

)
. (5)

To minimize equation (5), we use graph-cut and the alpha-
expansion algorithm [19]. In our experiments, we refer to this
segmentation method using the MRF label dependency model
as kNN-MRF.
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2) Conditional Random Fields (CRF): The MRF model of
equation (2) defines a joint distribution P (F, T ), which makes
certain simplifying assumptions about the distribution over F ,
such as the conditional independence of each Fv given the
value of Tv. One consequence of this choice is that neighboring
voxel features Fv′ of a label Tv (where v′ ∈ ηv) cannot directly
express a preference on the value of Tv . This yields a model
for the posterior P (T |F ) that is too weak in practice to model
the complex structures found in medical images.

Conditional Random Fields (CRF) is an alternative to MRF
which models directly the posterior probabilities of the labels
given the features P (T |F ). This alleviates the need to model
the distribution over the feature vectors F and allows us to
construct a richer conditional P (T |F ). For our CRF model,
we use

T = argmin
T∈T

∑
v

(
V (Fv, Tv) +

∑
r∈ηv

I(Tv, Fv, Tr, Fr)

)
.

(6)
The unary term, V (Fv, Tv) is computed the same as in (3) and
the pairwise term is defined as

I(Tv, Fv, Tr, Fr) = λ(1− δ(Tv, Tr)) exp

(
−‖Fv − Fr‖

σ2

)
.

(7)
We refer to the segmentation method using this label depen-
dency model as kNN-CRF.

IV. EXPERIMENTAL RESULTS

A. Setup

The dataset used for this research was provided by the
BRain Tumor Segmentation (BRATS) challenge as part of the
MICCAI-2013 conference. The challenge contains training and
test sections. For the training part, a total of 30 real patient
subjects (20 with high-grade tumors and 10 with low-grade)
and 30 simulated subjects along with the corresponding ground
truths are provided. The test set contains 10 real patient brains
with high-grade tumors.

Although BRATS provides separate challenges for real
patient subjects and simulated subjects, we only focused on
real patient subjects. Even though ground truth labels were
provided for training data, since our method does not rely on
cross-subject training, the ground truth was only used for the
validation of our method. Overall, the method was tested on
40 subjects (30 from training data and 10 from test data). We
used the same model hyper-parameters for all subjects and
through all experiments. They are as follows. For the k nearest-
neighbor algorithm, k = 3 closest neighbors were considered.
For the MRF algorithm, the smoothness term β was set to
0.2 and in the CRF algorithm σ and λ were set to 0.1 and 0.5
respectively. These values were selected by cross-validation on
6 brains in the training set.

As for the user interaction, we labeled voxels in only two
2D slices of each brain, for each class, from a graphical
interface. On average, only 0.4% of the voxels containing
pathology and 0.03% of the voxels corresponding to healthy
tissue were manually selected, thus providing minimal labeled
data to the algorithm. The same selection masks were used by
kNN, kNN-MRF and kNN-CRF.

B. Results and Discussion

The quantitative results and global evaluation reported
in this section come from the online BRATS system [4],
which also reports the performance of other state-of-the-art
methods (both automatic and semi-automatic could partici-
pate). Performance metrics include Dice, precision and recall.
As mentioned on the BRATS website, these measures are
computed for 3 different subsets of tumor classes, namely,
complete tumor, tumor core and enhancing tumor map. Com-
plete tumor includes edema, non-enhancing and enhancing
tumor while tumor core include non-enhancing and enhancing
tumor. Enhancing tumor includes only enhancing tumor.

Evaluation results for kNN , kNN-MRF and kNN-CRF
along with the other registered methods, on the training and
test data, are presented in Tables I and II respectively. These
results are reported by the online evaluation system in BRATS
website [4]. These tables show the average performance across
every brain for each metric. An average ranking system is
applied to rank different methods.

As far as the average ranking goes, kNN-CRF performs
better than kNN and kNN-MRF. This is not very surprising
since the use of a prior term helps regularizing kNN. But the
fact that the pairwise label term is data-dependent allows kNN-
CRF to generate resuls that better fit the edges of the images.
This is shown in Fig. 2 where the results by kNN is noisier
than for the other methods. Also, the borders of the kNN-CRF
tumor map better fit on the edges of the T1c and T2 images
than kNN-MRF.

Another observation from these tables is that contrary to
several other methods, our 3 kNN methods provided similar
score on both the training and testing data. For example, the
complete Dice score for Reza [10] (which is first on the
training dataset) goes from 0.92 on the training dataset down
to 0.83 on the testing dataset. Same with Doyle [20] whose
complete Dice score go from 0.83 down to 0.71. This is a
clear sign that these automatic methods can be vulnerable to
overfitting on the training data. This is not the case with our
method since it trains on each brain independently.

On the test dataset, our kNN-CRF method ranks second
on the Dice complete tumor (0.85) and Dice core tumor
(0.75). This is an important conclusion since core tumors
is what neurosurgeons remove during surgery. Complete and
core tumor segmentation is thus of primary importance in the
context of a preoperative application. We also implemented
kNN as presented by Vaidyanathan [16], but since they dont
use the (x,y,z) features nor any spatial regularization, the
results were significantly lower than our plain kNN shown in
Tables I and II.

As far as processing goes, our kNN-CRF and kNN-MRF
methods take between 1 and 2 minutes to process a brain on
Matlab. This is significantly faster than many other methods.
For example, Meier [2] report that their method takes up to
15 minutes per brain. Let us mention that a preliminary GPU
implementation makes us believe that a GPU version of kNN
and graph cut should take processing time down to a few
seconds.

As explained earlier, part of the reason why our method is
fast is that it relies on a small set of easily extracted features.
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T1c T2 kNN kNN-MRF kNN-CRF GT

Fig. 2. Illustration of brain tumor segmentation maps predicted by our method, for four different brains (rows). From left to right, the columns show the T1c
modality, the T2 modality, the segmentations predicted by kNN, kNN-MRF and kNN-CRF, and the ground truth segmentation.

Furthermore, the fact that we use a 6D features makes our
method memory efficient. Since, brain images contain about
240×240×168 voxels, methods using high dimensional feature
vectors (Festa [3] compute up to 300 features per voxel) will
require gigabytes of memory to store one single brain.

Top ranking methods on the test set [11], [2] use random
forests applied on a larger set of features. However, computing
many features is time consuming. Tustison [11] reported that
feature extraction takes up to 11.5 hours for 30 subjects (24
minutes per subject). This is due to the fact that their features
require cross-subject registration. Doyle [20] also reported a
processing time of 30 minutes per patient.

According to the BRATS challenge, our method is the
top performing semi-automatic method. The only other semi-
automatic method is the one by Guo [21], whose overall score
is significantly lower than ours.

V. CONCLUSION

In this paper, we presented a simple, fast, and memory effi-
cient method for brain tumor segmentation. Instead of training
on a given set of brains and generalizing on other brains, our
method trains and generalizes on each brain independently.
This is done with minimal user intervention, which roughly
selects tumorous regions in only 2 slices.

Our kNN-CRF method is globally ranked 3rd on the
training and testing datasets and provides the second best
results on complete and core tumors. Our method is also very
fast compared to other methods with approximately 1 minute
per brain on a Matlab implementation. We intend to implement
our method on a GPU, which should bring down processing
time to a few seconds.

In future work, we would like to further develop the idea of
within brain generalization by considering the use of machine
learning classifiers other than kNN, such as kernel SVMs,
and hopefully improve the accuracy even further. Also, we
would like to investigate a fully automatic variant of our
approach, where the initially selected tumours regions would
be automatically select, in order to remove manual interaction.
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