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Abstract—Roman coins play an important role to understand
the Roman empire because they convey rich information about
key historical events of the time. Moreover, as large amounts of
coins are daily traded over the Internet, it becomes necessary
to develop automatic coin recognition systems to prevent illegal
trades. In this paper, we propose an automatic recognition method
for ancient Roman coins. The proposed method exploits the
structure of the coin by using a spatially local coding method.
Results show that the proposed method outperforms traditional
rigid spatial structure models such as the spatial pyramid.

I. INTRODUCTION

A coin is usually a flat piece of metal issued by gov-
ernmental authority as a medium of exchange. It has been
produced in large quantities to facilitate trade from the ancient
history to the present. Along with the trading purpose, the
Roman empire knew how to effectively use the coin as their
political propaganda. The ancient Roman coins were widely
used to convey the achievements of Roman emperors to the
public. They were also served to spread messages of changing
policies or merits through the empire. By engraving portraits
on the coins, the Roman emperors also could show themselves
to the entire empire. In short, the coins were the newspaper of
the Roman empire. In this way, the Roman coins are always
connected to historical events and Roman imperial propaganda.
Therefore, understanding the ancient Roman coins could serve
as references to understand the Roman empire.

The Roman coins have been collected by people as a hobby
because of not only their bullion value but also their artistic
value. Moreover, as the coins were massively produced, there
are huge numbers of the Roman coins so that they are not rare
like other antiquities. In addition, new Roman coins are daily
excavated, make themselves affordable to collect and become
popular for non-academic enthusiasts. Most of the coins today,
in fact, reside in private collections [1].

Because the coin market is very active, a lot of coins are
traded every day, mostly over the Internet [1]. But ancient coins
are also becoming subject to a very large illicit trade [2]. A
traditional way to detect the illegal traffic of the ancient coins
is to periodically and manually search catalogue, dealers or the
Internet by authority forces. But those methods have limits to
prevent the illegal trade because manual process is too slow
to cover all the trades. Therefore, there is a need to develop a
both reliable and automatic method to recognize the coins.

There are tens of thousands of typologies that could be
used to classify Roman coins [1], [3]. Therefore those who
do not have knowledge and experience cannot classify them
without the help of experts or automatic classifiers. In this
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(a) Vespasian

(b) Vitellius

Fig. 1: Inter-class similarity in the ancient Roman coins.
Vespasian looks similar to Vitellius.

paper, we focus on the recognition of the Roman emperors on
the Roman imperial coins. Specifically, for a given coin image,
we proposed an automatic method to recognize who is on the
coin.

Inter-class similarity and intra-class similarity are two
challenges to recognize the ancient Roman coins. For the inter-
class similarity, different emperors share similar appearance as
shown in Figure 1 and Figure 10. There are several reasons for
the similar appearance: familiar relatedness, engraver’s lack of
knowledge for the emperor’s image or abstraction, or using
the same template for different emperors. Another aspect of
the coin recognition challenge is the intra-class dis-similarity
as shown in Figure 2. There may exist a large variation within
the same class. On a very basic level, the direction of the
emperor’s face varies over the coins: some emperors look left
and the others look right without any specific rule as shown
in Figure 2.

Several works have proposed to recognize the coins [4],
[5], [1], [6], [2], [7] in the computer vision community. They
represent the coin image as low level visual features, ignoring
the structure of the coin [5], [4]. Arandjelovi¢ [1] introduces
a directional kernel which indirectly uses the structure infor-
mation but did not explicitly facilitate the use of the spatial
structure of the coin.

In this paper, we address a problem of automatically rec-
ognizing ancient Roman coins, while leveraging their spatial
structure and without focusing on the textual transcripts. The
ancient Roman coins have regular structure: the coin is round,
the location of the emperor is at the center of the coin, the
emperors share common aspects all over the coins, and so
on. We propose a framework to leverage the coin structure
to improve the recognition accuracy. To the best of our
knowledge, this is the first paper which uses the structure of the
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Fig. 2: The emperors on the five coins are the same, Nero. But
there is variations on the shapes. In particular, one face looks
left while the others look right.

Roman coin for the recognition. Spatial pyramid models [8] are
usually used to encode spatial location information by defining
artificial boundaries (e.g., rectangular grid). On the other hand,
the proposed model directly handles spatial locations without
the artificial boundaries. The experimental results show that
the proposed coding method performs better than the spatial
pyramid models.

For this research we have collected a new ancient Roman
Imperial coin dataset, as a part of our contribution to the
computer vision community. All the coins are annotated and
consist of high-quality images.

This paper is organized as follows: Related work is sum-
marized in Section II. In Section III, we describe a new coin
dataset and outline basic coin preprocessing steps. Then, we
explain our proposed method in Section IV. Lastly, we show
experimental results in Section V and make conclusion in
Section VI.

II. RELATED WORK

Several methods for recognition and analysis of modern
coins rely on gradient information based approaches [4], [5]
and eigenspace decompositions [6]. But none of them are
adequate for the ancient coin classification because the ancient
coins are too often in very poor conditions, common recogni-
tion algorithms can easily fail [2]. In [9], SIFT descriptors [10]
are used to obtain 90% classification accuracy for 390 coin
images where there are only 3 classes. A directional histogram
to consider orientations of pixels was proposed in [1] for
the ancient Roman coin classification. The method proposed
in [7] is based on a dense correspondence search between
coin images. Unlike the previous works, the proposed method
explicitly considers the spatial structure of the coin.

The coin recognition problem can be considered as the face
recognition in terms of recognizing an Emperor’s face on the
coin. Many methods have been developed for recognition of
real face images. However, the use of such methods faces sig-
nificant challenges when applied to ancient coins. In terms of
its gradient/edge content, a typical critical feature used in face
recognition, most ancient coins display vastly different statis-
tics from photographed faces. This aspect is further aggregated
by the fact that many coins are old, worn-out and damaged.
For example, Figure 3 shows different HoG [11] distributions
between the coins and the real faces. Tzimiropoulos et al. [12]
proposed a method to learn subspace from image gradient
orientations (IGO subspace learning) for appearance-based
face recognition that was shown to be very robust to different
types of image noise. The advantage of using the IGO subspace
learning algorithm is that the cosine distance measure of the
algorithm can cancel out outliers or noise caused by occlusion
or illumination changes. However, the IGO-algorithm is very

322

Coin images
T

Frequency
oo o
2

I I I
Entire image sub-region 1 sub-region 2 Sub—region 3 sub- 4sub b b

Frequency
oo o

S A

L L > L L L L L L
Entire image sub-region 1 sub-region 2 sub-region 3 sub-region 4 sub-region 5 sub-region 6 sub~region 7 sub~region 8 sub-region 9

Front images
T

Frequency
oo o

|
7 sub-region 8 sub’ 9

Fig. 3: HoG Distributions for coin and real face images.
We extract the HoG descriptors from the entire region and
3 x 3 sub-regions. Each line represents the HoG descriptor
distribution of one sample. Top: coin images, Middle: profile
images, Bottom: frontal face images. The real faces show
regular patterns while the coins show different distributions.

sensitive to the alignment, requiring exactly aligned images
which require an additional huge amount of human effort for
the coin images. On the other hand, the proposed method is a
fully automatic one not requiring any human intervention.

III. CoOIN DATASET GENERATION

In this section, we describe how to collect coin images,
perform background removal and correct face direction.

A. Coin Data Collection

We collect ancient Roman coin images from a numismatic
web site. Each coin has a high resolution image (approximately
350 x 350 pixels jpeg image). Among the collected coin
images, we found that some of the coins are hard to recognize
because they are rusty and severely damaged. As we are
dealing with the problem of recognizing the Roman emperors,
a coin that is severely damaged or hard to recognize who is
on the coin is discarded. After removing such worn-out coins,
we select emperors who appeared more than 10 times in the
dataset. Finally, we arrive at 2815 coins with 15 emperors. The
sample images and the frequencies are depicted in Figure 10
and Figure 4, respectively. All images in the dataset are ancient
Roman Imperial coins dated from 27 BC to 355 AD. In this
paper, we consider only the observe(front) of the Roman coin
because the emperor is engraved in the observe and the reverse
usually shows various non-face symbols.

B. Background Removal

There are many well-known methods such as GrabCut [13]
to separate foreground from background. In this paper, we
observe that the Canny edge detector [14] can find the area
of the coin in the image. Figure 5 depicts the foreground
separation process. First, the Canny edge detector finds edges
for a given coin image. Figure 5b shows the edge detection
results. Then we fill out the inside of the outline, having the
mask for the coin area as shown in Figure 5c.

After finding the mask of the foreground, we add 5% of
the estimated diameter of the mask as a padding. The diameter
is estimated by averaging the largest horizontal and vertical
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Fig. 4: Histogram of the number of coins in each of the 15
Roman emperors in our dataset.

(c) Detected coin
area

(a) Original
image

coin (b) Canny edge de-
tection

Fig. 5: Foreground detection in the coin image.

length of the mask. We then resize the coin image to a fixed
350 x 350 pixels.

C. Face Direction

As we can see in Figure 1 and Figure 2, different emperors
look at different directions without any specific rule. Therefore,
it becomes necessary to automatically make all the emperor
look at the same direction otherwise we have to consider two
different coin structures. Figure 6 depicts a fast and effective
method to determine the direction of the face on the coin. For
each coin image, we divide it into left and right areas with an
overlapping part (red for left, blue for right and magenta for
overlap). We put the overlap for the case when a face area on
the coin is severely biased to the left or to the right. We extract
visual features, constructing histograms h'¢/t and k79" (resp.
hii’;t and h;ﬁght) from the left and right regions of the source
image (resp. the left and right regions of the target image).
Then, we measure two distances between the source and the
target images and between the source and the flipped target
images using the histograms. If the former is larger than the
latter, we simply flip the target image otherwise do nothing.
Based on this method, we determine the face direction of all
the coin images in the dataset using the algorithm depicted in
Figure 7. The algorithm assumes that we are given a single
image as which we make all the other coin images look at
the same direction. From a set the single image, we increase
the size of the set by iteratively adding images. The algorithm
performs the majority vote to determine the direction which
prevents the algorithm from making a wrong decision for a
biased coin. Using this method, we can determine the direction
of the face with 100% accuracy.
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Fig. 6: A method to determine whether two emperors look at
the same direction or not.

1. Input: {I1,...,IxN}, Output: S (face directions are corrected)

2. S={L}

3. foreach : € {2,3,...,N}

4. foreach j € {1,...,i— 1}

5. d(5) = DR R, el nytom)) -
D([hz-eft, h;zghtL [hzzght’ héeft]) <0

6. end

7. if majority_vote({d1,...,d;—1} ==1

8. Do not flip I;

9. else

10. Flip I;

11. end

12. S=Su{l;}

13. end

Fig. 7: Algorithm to make all the emperors look at the same
direction. D(-) is a measure to calculate a distance between
two histograms such as the x? distance.

IV. PROPOSED METHOD

In this section, we explain a baseline approach. Then we
propose a visual-spatial feature to recognize the ancient Roman
coins.

A. Baseline Approach

We use the bag-of-words model for constructing the visual
histograms. The model 1) selects a set of key-points, 2) extracts
visual descriptors on the set of key-points, 3) the descriptors
are quantized into a visual codebook and 4) an input image is
represented as a histogram of the codewords in the codebook.

There are a number of ways to find interest points including
dense regular grid [15] and difference-of-Gaussian (DoG)
peaks [10]. We choose the dense grid sampling because it
shows better performance than the DoG sampling method. The
SIFT descriptor [10] is used to extract the visual descriptors
on the grid points. Then we use k-means clustering to build
the visual codebook, generating the histograms for the coin
images using the visual codebook.

The dense sampling gives the same weight to all the key-
points, ignoring the spatial location in the image. The coin has
the regular structure, but the dense sampling makes no use
of this information. To overcome this limitation, we follow
the spatial pyramid models widely used in computer vision



Fig. 8: Left: grid sub-regions. Right: the polar coordinate
system. We build a histogram on each region and concatenate
all the histograms to represent one image.

Fig. 9: SIFT matching results on the real faces and the coin
images. Left: matching using SIFT descriptors on the real
faces. Middle: matching using SIFT descriptors on the coin
images. Right: matching using the proposed method.

area [8], [16]. Sampling on predefined sub-regions of an image
(e.g., 1 x 1,2 x 2,4 x 4) has been suggested to improve the
performance. We also use the polar coordinate system to take
an advantage of round shapes of the coin and the face of the
emperor. Figure 8 depicts the examples of the grid sub-regions
and the polar coordinate system on the coin image. In the polar
coordinate system, we place the center of the system at the
center of the coin and the radius of the inner circle is set to
cover the face of the emperor. One can find that the inner circle
separates the face from the legend of the coin.

B. Spatial Coding for Coin Recognition

Edges and shapes on the coin images are weaker than those
on the real face images as the coins are old and contami-
nated by damages, rust, worn-out. More importantly, the bas-
relief ambiguity [17] also makes it difficult to recognize the
shape of the coin. We illustrate the difficulty using the SIFT
matching [10] in Figure 9. For a fair comparison, we crop
the regions to contain only faces. The SIFT matching can find
matched points for the real human faces as shown in the left
panel of Figure 9. However, the matching method dose not
find adequate points properly on the coin image as shown in
the middle panel of Figure 9. The bas-relief ambiguity of the
coin misleads the matching method. For example, a point on
the chin is matched to a point on the eye (blue line).

To overcome the aforementioned problem, we propose a
method to use the spatial structure of the coin. McCann and
Lowe [18] proposed a spatially local coding method to handles
the spatial locality. We adopt the local coding method to
encode the coin image to use the spatial locality information
without relying on the spatial pyramid models. We expect the
spatial locality to reduce the ambiguity of the coin images.

Let assume that a pixel p of an image is encoded as

¢(p) = [’01,’112, .. :vd]T7

where v; is the th visual descriptor (e.g., SIFT) and then the
pixel is represented as a d-dimensional vector. We augment
the representation by adding the location of p as

d)l(p) = [¢(p)7 /\:Z:7 )\y} = [Ulv V2,...,Vd, )\III, )\y}T

)
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where x and y are the two normalized coordinates of the
pixel in the image and A € R is a parameter to control the
importance of the location.

After extracting the augmented features from the images,
we run the k-means clustering algorithm to construct the
codebook by minimizing
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where the superscripts [ and v represent the location descriptor

and the visual descriptor, respectively, 7'r is the set of indices
for the training data, D = [DV; D!], D € RU+2xK Dv ¢
RI*K Dl e RZXK g the codebook and a; € RE*1 is the
codeword for ¢'(p;). Lo and L; norms are used for the hard
assignment, i.e., only one element of a; is 1 and all the others
are 0. For a new feature vector, we assign it to the nearest
codeword in the codebook. Equation 1 is reverted to the typical
bag-of-feature representation by setting A = 0.

Minimization of Equation 1 seeks to produce codes a;
such that not only visually similar descriptors but also spatially
close descriptors belong to the same cluster. In this sense, it is
close to Locality-constrained Linear Coding (LLC) [19]. But
the proposed method considers the locality in the pixel space
while LLC does in the descriptor space. By using the location
information in the pixel space we can facilitate the use of
the spatial structure of the coin. The right panel of Figure 9
shows the effectiveness of the augmented representation as
the matching algorithm can find the adequate points on the
coin images. To archieve good classification performance,
similar descriptors should produce similar codes [19]. In the
proposed method, we extend this idea into the pixel space
so that the both visually and spatially similar parts in the
coins produce similar codes. Experimental results show that the
proposed method successfully contributes to the recognition
performance.

V. EXPERIMENTAL SETTINGS AND RESULTS
A. Experimental Settings

We examine the performance of the proposed method on
the coin dataset which we constructed. The coin dataset con-
sists of 2815 images with 15 Roman emperors. For the purpose
of the evaluation, the coin dataset is randomly partitioned into
5 equal size subgroups. Each subgroup keeps the same emperor
ratio as the total coin dataset. Then, we use 4 subgroups as
training data and 1 subgroup as test data. Experiments are
repeated 5 times so that each of 5 subgroups becomes the test
data, and we report the average of the 5 outputs as a final
output.

We extract the SIFT descriptors from the image as visual
features in the dense manner. The location of the descriptor is
normalized by the size of the image, ranging from O to 1. We
obtain a codebook with K words by k-means clustering on
the extracted features and then the representation of the image
becomes a K-dimensional vector. In this paper, we set K to
2000. K was chosen because it shows the best performance.
In fact we will investigate how K impacts prediction accuracy.
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Fig. 11: Left: results of k-means clustering, where each green
dot represents a location of each codeword. Right: red dots for
locations of the most discriminative codewords and blue dots
for locations of the least discriminative codewords
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Fig. 12: Recognition accuracies for various K. The perfor-

mance goes down when K is larger than 2000.

We use the x? distance to calculate the distance between
two images. The 2 histogram distance is based on the x?
test-statistic to test the fit between a distribution and observed
frequencies and has shown successful performance in the
object categories classifications [20], [21].

The multi-class SVM is used for training and prediction
with the RBF-x? kernel. All parameters are determined by the
5-fold cross validation. For the evaluation, we calculate the
average number of correctly classified test samples.

B. Experimental Results

To set the baseline performance, we use three different
methods: NoSpatial does not use the spatial pyramid model,
Grid uses the grid sub-regions and Polar the polar coordi-
nate system. We also implemented a directional kernel (DK)
method proposed in [1].

Figure 11 depicts the results of the k-means clustering.
In the left panel, each green dot represents the location of
the codeword in the codebook (i.e., D' in Equation 1). The
codewords located at the face area and the legend area where
there exists strong edges while smooth areas have smaller
number of the codewords. As we use the legend which
provides rich information about the coin, the proposed method
implicitly uses contextual information. In this sense, the coin
recognition is different from the face recognition where there
is no contextual information.

To measure the importance of the codewords in terms of
the location, we follow a method described in Section 3.4 in
[22]: 1) we first select a set of the codewords that are spatially
contained in a circle, 2) we zero features associated with the
selected codewords, 3) we run the SVM trained as above with
the newly created features, 4) we repeat this process. The
prediction difference between the original features and the new
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TABLE I: Coin recognition accuracy (%)

[ [ NoSpatial | Grid [ Polar DK [1] [ ours |
| ACC [ 61.7 (£2.0) | 744 (£0.8) | 77.2(£0.6) | 33.0 (x 3.0) | 823 (£13) |

features implies the contribution of the selected codewords:
the larger the difference is, the more important the set of the
codewords is. The red dots and the blue dots in the right
panel of Figure 11 show two sets of most important and
two sets of least important regions, respectively. We can find
the the forehead area is the most distinctive because different
emperors have different hair ornaments and hairstyles. On the
other hand, the legend area is the least discriminative because
gradient-based features (e.g., SIFT) is insufficient to extract
the contextual information.

The recognition accuracies are summarized in Table L
The methods using the spatial information perform much
better than NoSpatial. In particular, the proposed method is
about 21% better than NoSpatial, implying that the spatial
location plays an important role in the recognition. Polar
performs better than Grid because the circular shape of the
polar coordinate system conforms to the shape of the coin. The
proposed method gains 5% improvement over Polar without
pre-defined spatial pyramids such as the grid sub-regions and
the polar coordinate system This result implies that by directly
encoding the location, the spatial code used in the proposed
method has more information about the structure of the coin
than any other spatial pyramid models. DK shows the worst
performance because it depends on the DoG sampling method
which performs worse than the dense sampling in the collected
coin dataset.

Figure 12 shows how the number of codewords in the
dictionary impacts the recognition accuracy. If K is less than
500, Polar performs better than the proposed method because
500 words is insufficient to encode both visual and spatial
locality for the proposed method. However, as K increases, the
proposed method outperforms Polar. In fact, the proposed
method produces more compact representation than Polar
because Polar concatenates K -dimensional vectors from a
set of regions (e.g. the total dimension becomes K x r where
r is the number of the regions).

Figure 13 depicts the confusion matrices of NoSpatial,
Polar and the proposed method. The proposed method suc-
cessfully improves the recognition accuracies all over the 15
classes. Maximian shows the best performance because he
has a discriminative shape, spiky hair as shown in Figure 10h.
Constantinus II and Maximinus II show the worst
performance because the number of training images for them
are relatively lower than the others and their appearances are
similar to the others so they are easy to be confused.

VI. CONCLUSION

We proposed an automatic method to recognize the ancient
Roman coins. The proposed method directly handles the spatial
location of the visual feature to encode the image. Therefore,
unlike the spatial pyramid models, our method does not need to
find out the adequate structure of the pyramid. The experiments
show that the propose method outperforms the other methods
based on the spatial pyramid models.



[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

(10]

(11]

(b) Caligula () Constantine I

(d) Constantius IT

(f) Galba (g) Hadrian (h) Maximian

(i) Maximinus I (]) Nero (k) severus

Fig. 10: An example observe image

(1) Tiberius

(m) Trajan (n) Vespasian (0) Vitellius

of a coin for each of the 15 classes in the dataset.

AR 1.1]0.4] 0 [2.9]1.10.5] 0 [0.2]8.1 afFRI 2 [ 0] 0 [07]09]09] 00 [2.7 k 2 1.6[0.2] 0 [1.1]0.2]0.9] 0 [ 0 [1.6] 0 [3.6]0.4]1.8]0.2
bl 11 841 0 8200 11 b 6 JEEI 2 5/5[0[0]0[4 b1 G 10 [4[3[0f0f0[al0[f2[0 22
c[8.2] 0 [ZK 0 [1.2[1.2[4.7] 0 [5.9 82| 0 JEN 0 [2.4[2.4[47[12[ 0 0 c[5.9] 0 EENE1.2[ 0] 0[24[35[1.2/ 0 [1.2] 0 [1.2] 0 | 0
d[40] 0 88370 [10] 0 [10] 0 0 d 0[20[10( 0] 0 [80] 0 0 0 d[10] 0 [80]16.7 0 [ 0 [16.7] 10 10/0[0067]0
€[3.9[0.2] 0 0.2 00 7.3 [0.6]0.4] 0 E[0.2] 0 [ 0 3.1 2 e[1.7[0.4[0.2] 0 [ERE0.4] 0 [ 0 1.7/ 0 [0.6] 0 [5.6]0.2]
9.1]1.8] 0 46239 010 2.9 f9.11.8/ 0 2.8FH] 010 56 8 9 15.5[0.9] 0 1 R 0 [ 0 2.7 000 P56 1|
g[9.4] 0 [2.2] 0 [0.2] 0 6.7] 0 [6.7 oft6d[ 0 [4.7] 0 [2.2] 0 FWI2.2] 0 [9.4 0 22[ 0 qfiid 0 [2.2] 0 [2.2] 0 [EEI2.2[ 0 [9.7]25[ 0 [4.4]2.2[ 0
n[4.4]0 (1.9 010.6 0 h[4.4]0 [32 0 [0 0 FXN 0 0 06[0 250 [3.2 000 FEM 0l0]o0]o0]l06[0
i26.7] 0 0 | 0 [13.9] 0 i13.3 0 [ 000117 0 67/ 000 i 0 [ 0 [XHe 0] 0[011831.7 0] 0[6.7[0][0]0
j[7.4]4.210.9] 0 [151[0.9[0.6 1.2 j[5.6]3.3] 0 4.2[1.8]1.5[0.3] 0 [7] 0 | 3 [1.8]11.20.3 j42[1.2] 0 2.7[0.9]1.5[ 0 011.5[0.9/5.3[0.6
K151 0 [11.7 5 [11.7 10 K17 0[5 010 [11.7 10 [0 5 [ 5 [16.7 0 K670 0 00 [10[1 7110] 0
126.1]11.7] 0 17 [12.6 |’2§.215.9 0.9 5 0.9[0.8 0.8 0.816.7]0.8] @.a 6.7[0.8] 0 [2.5[0.8[0.9 171 0 6.7] 0|
mli2.72.2[2.2] 0 [6.4] 2 8 m[2.2[4.2] 0 6 0 [12.7] 8.2 0 8.9 2 m[ 0 [4.2] 0 8| 2 [12.7] 4.2[2.2 0.7 0
n[5.2] 0 [0.3 0.7 6.7 n[1.2[0.1] 0 2.2[2.5] 0 3 [1.1] 0 0.8 n[0.7[0.1] 0 2 22 0 2.2] 0 7.
o674 10 53[0 0.7 o[6.7[1.3[ 0 13[410 93/ 01410 3 o1.3[13[0 27[010 1310 0 3

a b ¢ d e f g h i |j a b c d e f g h i j k I mn o a b c¢c d e f g h i j kK I mn o

(a) NoSpatial (b) Polar (c) Proposed method

Fig. 13: Confusion matrices for NoSpatial,

REFERENCES

O. Arandjelovi¢, “Automatic attribution of ancient roman imperial
coins.” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2010.

M. Zaharieva, M. Kampel, and S. Zambanini, “Image based recognition
of ancient coins,” in Conference on Computer Analysis of Images and
Patterns (CAIP), 2007.

H. Cohen, Description historique des monnaies frappées sous 1’empire
romain, 2nd ed. Paris, France, 1880-1892, no. Vol I-VIII.

L. J. P. van der Maaten and P. J. Boon, “Coin-o-matic: A fast system
for reliable coin classification,” in MUSCLE CIS Coin Competition
Workshop, 2006.

M. Nolle, H. Penz, M. Rubik, K. Mayer, I. Hollaender, and R. Granec,
“Dagobert - a new coin recognition and sorting system,” in Conference
on Digital Image Computing: Techniques and Applications (DICTA),
2003.

R. Huber, H. Ramoser, K. Mayer, H. Penz, and M. Rubik, “Classi-
fication of coins using an eigenspace approach,” Pattern Recognition
Letters (PATREC), vol. 26, pp. 61-75, 2005.

S. Zambanini and M. Kampel, “Coarse-to-fine correspondence search

for classifying ancient coins,” in Asian Conference on Computer Vision
(ACCV), 2012.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in IEEE
Computer Vision and Pattern Recognition (CVPR), 2006.

M. Kampel and M. Zaharieva, “Recognizing ancient coins based on
local features,” in International Symposium on Advances in Visual
Computing (ISVC), 2008.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision (IJCV), vol. 60, pp. 91-110,
2004.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR, 2005.

326

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Polar and the proposed method.

G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “Subspace learning from
image gradient orientations,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), vol. 34, pp. 2454-2466, 2012.

C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive fore-
ground extraction using iterated graph cuts,” ACM Trans. Graph.,
vol. 23, pp. 309-314, 2004.

J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-698,
1986.

L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning
natural scene categories,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2005.

I. Dimitrovski, D. Kocev, S. Loskovska, and S. Deroski, “Hierarchical
annotation of medical images,” Pattern Recognition, vol. 44, pp. 2436—
2449, 2011.

P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille, “The bas-relief
ambiguity,” International Journal of Computer Vision (IJCV), vol. 35,
pp. 33-44, 1999.

S. McCann and D. G. Lowe, “Spatially local coding for object recog-
nition,” in Asian Conference on Computer Vision (ACCV), 2012.

J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2010.

M. Varma and A. Zisserman, “A statistical approach to material classifi-
cation using image patch exemplars,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, pp. 2032-2047, 2009.

J. Zhang, M. Marszatek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: a com-
prehensive study,” International Journal of Computer Vision, vol. 73,
pp. 213-238, 2007.

P. Isola, J. Xiao, A. Torralba, and A. Oliva, “What makes an image

memorable?” in I[EEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.



