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Abstract—The use of Millimetre wave images has been
proposed recently in the biometric field to overcome certain
limitations when using images acquired at visible frequencies. In
this paper, several body shape-based techniques were applied to
model the silhouette of images of people acquired at 94 GHz. We
put forward several methods for the parameterization and classifi-
cation stage with the objective of finding the best configuration in
terms of biometric recognition performance. Contour coordinates,
shape contexts, Fourier descriptors and silhouette landmarks
were used as feature approaches and for classification we utilized
Euclidean distance and a dynamic programming method. Results
showed that the dynamic programming algorithm improved the
performance of the system with respect to the baseline Euclidean
distance and the necessity of a minimum resolution of the contour
to achieve promising equal error rates. The use of the contour
coordinates is the most suitable feature to use in the system
regarding the performance and the computational cost involved
when having at least 3 images for model training. Besides, Fourier
descriptors are more robust against rotations, which may be of
interest when dealing with few training images.

I. INTRODUCTION

Many biometric characteristics are used to identify indi-
viduals: fingerprint, iris, voice, face, hand, signature, etc. The
majority of these biometric traits are acquired with cameras
working at visible frequencies of the electromagnetic spectrum.
Such images are affected by, among others factors, lighting
conditions and body occlusions (e.g. clothing, make up, hair,
etc.). To overcome these limitations, researchers have proposed
the use of images acquired at other spectral ranges: X-
ray, infrared, millimeter (MMW) and submillimeter (SMW)
waves [1]. The images captured beyond the visible spectrum
circumvent, to some extent, some of the mentioned limitations;
furthermore, they are more robust to spoofing than other
biometric images/traits.

Among the spectral bands out of the visible spectrum,
the millimeter waves (with frequency in the band of 30-
300 GHz) present interesting properties that can be exploited
in biometrics: ability to pass through clothing and other
occlusions, innocuous to health, low intrusiveness, and the
recent deployment and rapid progress of GHz-THz systems
in screening applications.

In spite of the previous advantages, to date, there are just
a few works on this field. Specifically, just one working with
real data [2], and some others based on BIOGIGA database,
which is a synthetic database [3], [4], [5]. In [2], Alefs et
al. proposed a holistic recognition approach based on the
texture information of the MMW images. On the other hand,

the works by Moreno-Moreno et al. [4], [1], [3] put forward
a biometric system based on geometric measures between
different silhouette landmarks of the contour. There is also a
previous work [5] in which some baseline techniques such as
the contour coordinates, Euclidean distances and dynamic time
warping algorithm are utilized in order to build a biometric
system based on the contour information. This shortage of
biometric recognition research based on MMW images is
mainly due to the lack of databases of images of people
acquired at 94 GHz. This lack is a consequence of: i) the
privacy concerns these images present, and ii) most of the
imaging systems working at the MMW/SMW band are either
in prototype form or not easily accessible for research.

In this paper, we extend the previous work [5] by com-
paring multiple shape descriptors of the body contours. This
is inspired by previous works, which show that recognition
through the shape and boundary of traits such as the hand
[6], [7] or the signature are fairly reliable [8], [9]. For this
comparative study, we use some shape feature that have a large
dimensionality whereas others such as silhouette landmarks
present fewer points. Our aim with this work consists of assess-
ing all these features regarding its performance, computational
time and robustness.

Figure 1 draws a simple diagram explaining the different
stages of the considered body shape biometric system. As can
be seen, there are three principal stages: the contour extraction,
the feature extraction stage and the comparison stage.

This paper is structured as follows. The database, and
the procedure carried out to obtain the contours of people
is explained in Section II. Section III describes the different
feature extraction and similarity computation approaches used
to compare the contours. The evaluation of these methods is
performed in Section IV, and conclusions are finally drawn in
Section V.

II. DATABASE AND CONTOUR EXTRACTION

The corpus of the BIOGIGA database consists of synthetic
images at 94 GHz of the body of 50 individuals (25 males and
25 females). The images are the result of simulations carried
out on corporal models at two types of scenarios (outdoors
and indoors) and with two kinds of imaging systems (passive
and active). These corporal models are previously generated
using the software MakeHuman1 based on body measurements
taken from real subjects. Then, these models are imported to

1http://makehuman.org/
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Fig. 1. General scheme of the body shape biometric system.

Blender2, which simulates the effect of the 94 GHz radiation
over the human models. A more detailed description of the
generation of the BIOGIGA database can be found in [4].

In this paper, only passive images at outdoor scenarios are
considered similarly as the previous work using a real database
[2]. This subset of the database is comprised of 50 subjects,
with 6 images per user. Three of them were simulated with
clothes, and the other three were simulated without clothes
to analyse the effect of clothing and have some variability
between the images of the same person. For this, three angles
between the subject and the camera were considered, having
images with -10, 0 and +10 degrees. Figure 2 shows an
example of the images from a single subject of the database.
As can be seen, images with and without clothes are very
similar as the 94 GHz band is almost transparent to clothes;
however, the pixel intensity is a bit darker in the images with
clothes and small parts of the clothes are still noticeable in the
waist and neck.

The first processing step was to binarize the images,
separating the background from the body. A characteristic of
the images simulated by passive systems is the different grey
level they present in different parts of the body. For instance
the abdomen is much darker than the feet. This fact hinders the
segmentation process. This problem was overcome performing
the segmentation in two steps: i) border detection, and ii)
morphological detection.

A Canny border detector is first applied to the image.
The parameters of this detector has been empirically tuned.
After that, various morphological operations are conducted on
the resulting border image. These morphological operations
consist of closing operations with different structural elements
in different areas of the image (head, arms, from arms to
calf, and feet). Finally, another set of morphological closing
removes spurious irregularities, and leads to the final contour
of the human body, which is used in the following experi-
mental sections. Figure 3 shows an example of the process of
segmentation and contour extraction for user 1.

2http://blender.org/
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Fig. 2. Synthetic images of one user simulated at 94 GHz with a passive
system and outdoors. The figure shows the three different camera angles
available, and images with clothes and without clothes.

Input Image Segmentation Contour extraction

Fig. 3. Main steps followed in our system to extract the contour. From left
to right: Original image (of a subject with clothing and a camera angle of +10
degrees), segmented image, contour extraction.

III. SHAPE-BASED BODY COMPARISON

This section describes the approaches based on the body
shape followed in order to build the biometric system based
on the contour information. Within the feature extraction and
the classification stage, there are several techniques that may
be applied. In this section, we will proceed to outline every
technique proposed either for the feature extraction or the
classification stage.
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A. Shape descriptors

We have selected for the feature extraction stage four
different approaches: i) contour coordinates themselves, ii)
shape contexts (a complex descriptor proposed by [10]), iii)
Fourier descriptors of the coordinates [11] and iv) silhouette
landmarks which are a reduced set of points which describe
the most discriminative parts of the silhouette [4].

1) Contour coordinates (CC): Contour coordinates are
used as the baseline feature approach. Concretely, we mean
by coordinate the 2-dimensional vector which specifies the
x and y position of every single point within the silhouette
of the body. The resolution of the contour is defined by the
number of coordinates being the original resolution of the
contours extracted from the MMW images of around 2800
points. The starting point of the sequence is the middle point
of the head. Through subsampling techniques, we will be able
to use different contour resolution ranging from 100 points up
to 2800 points.

2) Shape contexts (SC): Shape contexts descriptors are first
introduced by Belongie et al. [10]. This technique describes
a specific point considering the relative distance and angle of
the rest of the points within a shape. This method considers
the set of vectors originating from a point to all other sample
points on a shape. The number of radial bins and theta bins
are the main parameters of this descriptor. As a result, the
shape contexts of a shape with N points forms a vector of
size (N ∗ r bins ∗ θ bins).

For a point pi on the shape, we compute a coarse histogram
hi of the relative coordinates of the remaining n− 1 points of
the shape:

hi(k) = #{q �= pi : (q − pi) ∈ bin(k)} (1)

Equation 1 specifies that component k of histogram hi

contains the number of points different to point pi that lies in
bin(k). The basic idea of shape contexts is illustrated in Figure
4, which shows an example of a shape contexts descriptor for
two points in the eight digit. Note that the log-polar histogram
used in this case has a dimension 12 × 5 (we decide to use
the same configuration of parameters the author originally
proposed), where 12 accounts for the number of theta bins and
5 accounts for the number of radial bins. Dark colours mean
a high density of points within a bin, while ligther colours
imply less density of points. In both cases the majority of
points are quite distant from the specific point. Regarding the
angle distance, in the first case (see Figure 4 (a) and (c)) the
major density of points relies on the farthest angle distances,
while for the second case (see Figure 4 (b) and (d)) there are
approximately as many points in a medium angle distance as
in the far angle distance.

In order to compute the similarity between two shape
contexts, different distance methods or standard statistical
methods may be applied.

3) Fourier descriptors (FD): Although Fourier descriptors
[11] are a 40-year-old technique, they are still considered as a
good description tool [13].

These descriptors are simple to compute and robust against
translations and rotations since the effect these transformations

cause on the descriptors is completely known. To apply this
technique to our system, first we need to represent the contour
coordinates as complex numbers (see Equation 2). Secondly,
we apply the Fourier Transform to this complex numbers to
obtain the Fourier description (see Equation 3).

Let (xk ,yk), K = 0,1,...N − 1 be the coordinates of N
samples on the boundary of an image region. For each pair
(xk,yk) we define the complex variable:

uk = xk + jyk (2)

For the N uk points we obtain its DFT fl

fl =

N−1∑
k=0

ukexp(−j
2π

N
lk), l = 0, 1, ..., N − 1 (3)

The coefficients fl are also known as Fourier descriptors
of the boundary. Once the fl are available, the uk can be
recovered and the boundary can be reconstructed. The accuracy
of the reconstructed boundary will depend on the number
of Fourier coefficients used. If, instead of using all Fourier
descriptors, we use only the first P coefficients in comput-
ing the inverse transformation, this is equivalent to setting
fl = 0 for l > P − 1. This way the result of the inverse
transformation will be an approximation to uk. Although only
P terms are used to obtain each component of ûk, k still
ranges from 0 to N-1. Hence, the same number of points
exists in the approximate boundary, but not as many terms
are used in the reconstruction of each point. Bearing in mind
that high-frequency components account for fine detail, and
low-frequency components determine the global shape, the
discriminatory information of the shape is not lost in this
approximation.

4) Landmarks (LM): This last approach is proposed as
a possible feature for the feature extraction stage of the
system. These landmarks consist of a reduced set of key points
obtained in the work by [4]. Figure 5 shows an example of
the situation of these 14 points. In particular, they depict the
most singular parts of the people silhouette, among them:
head, neck, hands, underarms, waist, hip, pubis and feet. Each
landmark is caracterized by its position coordinates (x and y).

In this work, we also use these landmarks as features,
evaluate the results obtained and compare them with the
results achieved with the other approaches. Note that the
dimensionality of these features is much smaller than in the
other approaches.

B. Similarity computation

Regarding the classification stage, two types of distances
are employed: the Euclidean distance and the dynamic time
warping (DTW) algorithm - a more complex technique to
compute a similarity between sequences [14].
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(a) Point a (b) Point b (c) Histogram point a (d) Histogram point b

Fig. 4. Example of the computation of a shape contexts descriptor for two single points within the eight digit. Image a) and c) represent a point within the
eight digit and its respective log-polar histogram while Image b) and d) a different point within the same digit and its associated log-polar histogram. Images
extracted from [12].

Fig. 5. Set of 14 points (landmarks) describing the silhouette of user 1.

1) Baseline technique: Euclidean distance (ED): This sim-
ple approach consists in computing a dissimilarity measure
between the contour coordinates of two silhouette images.
The only restriction of this method is the fact that distances
need to be computed between sequences of the same length.
Therefore, a normalization of the length of the sequences must
be applied. Then, the Euclidean distance between the two
normalized contours is computed following equation 4,

ED =

N∑
j=1

2∑
i=1

√
((aij − bij))2

(4)

where a, b represent the sequence of contour coordinates of
images a and b respectively; i = 1, 2 represents the number
of coordinates describing each contour point, in this case: x
and y axes, and j = 1, ..., N defines every point of a contour,
assuming that every contour is characterized by N points.

2) Dynamic Programming: dynamic time warping (DTW):
The goal of DTW is to find an elastic match among samples of
a pair of sequences that minimize a given distance measure. In

the biometric field, it was first used for signature verification
[8].

In this work, DTW is used to obtain a cumulative dis-
tance between two strings of coordinates that is known to be
minimal. Equation 5 shows the transformation of this minimal
distance into a similarity score where K is a normalization
factor that takes into account the number of aligned points
between two sequences. One of the main advantages of this
algorithm is the possibility of dealing with sequences of point
that do not have the same dimensionality. In our case, contours
from different images do not have the same amount of points.

score = e−
DIST

K (5)

IV. EXPERIMENTS

This section describes the experimental work carried out to
analyse the performance of the different approaches described
in Section III. The aforementioned methods are tested with
the contour coordinates of the BIOGIGA database previously
described in Section II.

In this work, three different experimental protocols are
considered: i) protocol 1:1, ii) protocol 2:1 and iii) protocol
3:1, where the first number refers to the number of training
images considered per user, and the second number to the
number of test images per user, one in all cases. In order
to have the most challenging scenario with severe mismatch
between enrolment and testing regarding clothes, the database
is divided into two sets, where the images with clothes are
used for the training and the images without clothes are used
for the test.

It is worth noting that when having 2 or 3 images for
training, the fusion of the information contained in the images
is carried out at the score-level, i.e., all single comparisons
between training and test are done image by image, and then
the scores are fused using a sum rule.

As mentioned in Section III, experiments based on DTW
are analysed with all contours having their original size. ED
experiments are carried out with contours normalized to the
same size.

A. Results

In this experiment, we compare the performance of the
different approaches. Bearing in mind that there are four differ-
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Fig. 6. Performance (EER%) of the eight different approaches for 2800-points contours and for Protocols 1:1, 2:1 and 3:1. ED=Euclidean Distance,
DTW=Dynamic Time Warping, CC=Contour Coordinates, SC=Shape Contexts, FD=Fourier Descriptors and LM=Landmarks.

ent feature extraction approaches and two different similarity
measures, we have a total of eight possible biometric system
configurations. Figure 6 a) shows the performance in terms of
equal error rate (EER) for each of these approaches and the
three different protocols (P1:1, P2:1 and P3:1).

First, we can observe from Figure 6 a) that the EER
of the system decreases as the number of training images
increases (Protocol 3:1). It is also worth noting the remarkable
improvement of performance when applying the DTW algo-
rithm instead of the baseline Euclidean distance to the contour
coordinates and shape contexts approaches (specially in P3:1).
Applying DTW to the Fourier descriptors do not result in better
performance of the system since we deal with transformed
features that do not represent the shape of the body anymore.
In the case of the landmarks features, it is not worth applying
DTW to a feature vector of such a small dimensionality.

Regarding the average performance between all protocols,
the best approaches are CC-DTW (6%), SC-DTW (3.96%),
FD-ED (5.41%) and LM-ED (4.91%). For the 3:1 protocol,
a 1.33% of EER for the CC-DTW approach is achieved.
However, considering the other two protocols, it can be seen
that the performance of the CC-DTW approach is worse
compared to other cases. For example, the SC-DTW produces
lower EER rates for protocols 1:1 and 2:1. In the case of the
FD-ED approach, we observe that the number of training im-
ages do not imply considerable variations in the performance.
Regarding the LM-ED approach, we see that using a vector
with a dimensionality quite smaller than the vectors used in any
of the previous approaches, can produce comparable results to
the best approaches. However, in a real database we believe the
localization of these landmarks points would be not as robust
as in this synthetic database.

The computation cost invested in each approach should
not be forgotten during the assessment process (Intel i7-3770
CPU @ 3.4 Ghz RAM 8GB in Matlab R2012b). Figure 6
b) depicts the time in seconds spent during all the process,
taking into account the time needed to compute the features
and the time to compare a pair of feature-vectors. The main
conclusion we can extract from this time-comparison is the fact
that DTW algorithm implies an increment of the computational

time. This fact is magnified when dealing with shape contexts
features, mainly caused by the huge dimensionality of this
vector. Aiming to reduce the computational time, we propose
for future work to apply PCA to shape contexts. Doing this,
the shape contexts approach would be much more feasible
regarding real time applications.

B. Effect of contour resolution

A second experiment is carried out to analyse the effect of
the contour size in the recognition performance, for the cases
of contour coordinates and shape contexts using DTW. Figure
7 a) and b) represent the performance of the system against the
resolution of the contour. Considering the case of CC-DTW it
is very interesting to note a notable drop of EER when dealing
with a contour resolution of more than 500 points. Even though
the EER obtained with the bigger resolution (2800 points) is
slightly better that the EER obtained with 500 points, there is
a big difference in terms of computional time between using
a 2800-CC-DTW approach rather than a 500-CC-DTW one.
Concretely, the computational time invested drops from 1.48
to 0.81 seconds when reducing the resolution of the contour
down to 500 points. This is an important issue to bear in mind
for real-time applications.

Conversely, when using shape contexts descriptors the EER
drops as the resolution of true contour increases but there is
no clear knee point as in the previous case. In this case, we
need to work with the highest possible resolution.

V. CONCLUSIONS

In this paper, a complete body shape biometric system has
been developed for MMW body images (BIOGIGA database).
The use of MMW images instead of images acquired at
other spectral bands presents some advantages, mainly the
transparency of clothing at that frequency, allowing to extract
easily the contours from the images. Different approaches have
been analysed ranging from naive approaches such as contour
coordinates for the feature extraction stage or the Euclidean
distance for the classification stage to complex schemes such as
shape contexts or Fourier descriptors for the feature extraction
stage or the dynamic time warping algorithm for the similarity
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Fig. 7. Effect of the resolution with Contour Coordinates and Shape Contexts from 100 points up to 2800 points.

computation stage. The best results are obtained when using
the DTW algorithm directly to the contour coordinates for
the contours with the highest resolution for protocol 3:1
(1.33%). For other protocols, the use of Fourier descriptors
or Shape contexts may be quite reasonable bearing in mind
the computational cost of Shape contexts.

The limitations of this work are related to the special
characteristics of the database used explained previously.

Results from previous work [2], achieve similar perfor-
mance results but using only texture information of the torso
image. We believe that a fusion of both approaches, i.e, body
shape and texture would improve the results significantly. We
also propose for future work to carry out further studies so as
to kwow whether there is any difference in performance when
gender is taken into account.
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