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Abstract—As one of the most important image segmentation
models, the Mumford-Shah functional was developed to pursue
a piecewise smooth approximation of a given image based on
the regularization on the total length of curves. In this paper,
we modify the Mumford-Shah model using Euler’s elastica as
the regularization. A two-stage segmentation method is applied
the Euler’s elastica regularized Mumford-Shah model. The first
stage is to find a smooth solution of the variant Mumford-
Shah functional based on augmented Lagrangian method while a
thresholding is performed in the second stage to obtain different
phases for the segmentation. The K-means clustering method is
used as the technique to find the thresholds for the segmentation.
For intensity inhomogeneous images, we eliminate the effect of the
bias field by bias-corrected fuzzy c-means method. Experimental
results show that as the regularization, Euler’s elastica makes the
Mumford-Shah model perform better for many kinds of images,
including tubular and irregular shaped, CT Angiography (CTA)
and MRI images in different noise level.

I. INTRODUCTION

As a fundamental topic in image processing, the goal of
image segmentation is to decompose the image domain into
local regions. Such techniques are critical in computer aided
diagnosis and computer aided treatment. For example, accurate
segmentation of coronary arteries is important to quantify
coronary artery stenosis.

Mumford and Shah [1] treated the given image as a
function and pursued its piecewise smooth approximation, in
which the boundaries are referred to the transition between
adjacent patches of the approximation. Let Ω ∈ R

2 be open
and bounded and Γ be a closed subset in Ω. Given an observed
image f : Ω→ R, to find its piecewise smooth approximation
g, Mumford and Shah proposed to minimize the following
functional:

EMS(g,Γ) =
η

2

∫
Ω

(f − g)2dx+
μ

2

∫
Ω\Γ

|∇g|2dx+ |Γ|, (1)

where η and μ are positive parameters and |Γ| denotes the
length of Γ. Since the Mumford-Shah functional (1) is non-
convex, finding the minimizer is not straightforward and may
trap in local minima.

One of the most successful relaxation of the Mumford-Shah
functional was proposed by Chan and Vese [2], which seeks for

an approximation of the given image with a binary piecewise
constant representation through a level set formulation. Let
ω ⊂ Ω be an open subset, denoting Ω1 = ω, Ω2 = Ω\ω,
Chan-Vese model can be expressed as the minimization of the
following energy:

ECV (c1, c2,Γ) =
η

2

∫
Ω1

(f−c1)
2+

η

2

∫
Ω2

(f−c2)
2+ |Γ|, (2)

where c1, c2 are two constants that approximate the image
intensity in Ω1 and Ω2, respectively. The two-region segmen-
tation model (2) was extended by Vese and Chan to multiple
regions in [3] using a multiple level set formulation for more
general segmentation problems. Due to the assumption that
images consist of statistically homogeneous regions, these
models are usually called piecewise constant (PC) models.
To overcome the rigorous restriction of PC models, some
attempts aim to minimize the Mumford-Shah functional in
piecewise smooth (PS) formulations [3], [4]. Similarly, the
Mumford-Shah functional is reformulated by employing level
set functions and elliptic type equations are required to be
solved. Therefore, both models are computational expensive
and require a very good initialization to guarantee global
minima. Recently, a two-stage Mumford-Shah (TSMS) model
was proposed [5], which separates the segmentation task of
minimizing the functional (1) into two stages: the first stage
of finding a smooth solution to a convex variant of the
Mumford-Shah functional and the second stage of thresholding
the solution into different phases for segmentation. There are
good characteristics in both stages to make the two stage
segmentation framework user friendly, i.e.,

� The convex variant Mumford-Shah functional in the
first stage has the global minimizer g, which can be
easily and quickly computed by standard optimization
techniques, such as the split-Bregman algorithm and
the Chambolle’s dual method;

� The thresholding in the second phase is done by either
K-means method or user specified threshold(s), which
can be solved quickly;

� There is no need to 1) specify the number of segments
K (K ≥ 2) in the first stage and 2) recompute
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g if the thresholds are changed to reveal different
segmentation features.

In fact, accurate segmentation of medical images still faces
difficulties because of the presence of small foreground struc-
tures and the existence of noises. Unlike the Mumford-Shah
functional (1), in which the total length of curves serves as the
regularization of the boundaries, we propose a novel Mumford-
Shah model by employing Euler’s elastica as the regularization.
Euler’s elastica was first introduced by Mumford [6] as a curve
model

E(Γ) =

∫
Γ

(a+ bκ2)ds = aLength(Γ) + b

∫
Γ

κ2ds, (3)

where κ is the curvature, s is arc length and a, b are tunable
positive weights. In (3), if a = 0, E(Γ) measures the total
curvature of the curve while if b = 0, E(Γ) measures the total
length of the curve. Therefore, Euler’s elastica minimizes the
total curvature of each level line in the image.

In [7], the authors used Euler’s elastica as the regularization
in the Chan-Vese model (2) for binary image segmentation. In
this work, we directly apply Euler’s elastica to the Mumford-
Shah functional (1) by taking the advantage of properties of
Euler’s elastics for multi-phase segmentation. As a powerful
tool for image inpainting [8], [9], Euler’s elastica can integrate
missing or broken parts to generate complete objects. Euler’s
elastica was also implemented to image denoising [10], [11] to
capture objects without preserving other negligible dots such
as noise.

In addition, intensity inhomogeneity widely occurs in many
real images of different modalities. It is often seen in medical
imaging, such as MR and CT images, which is caused by
limitations in imaging devices and subject-induced suscepti-
bility effect. Such intensity inhomogeneity can lead to serious
misclassifications when intensity-based segmentation models
are implemented. There exist several inhomogeneity correction
methods, that could be applied before the segmentation. In
this paper, we apply the two-stage segmentation framework
similar to [5] to our Euler’s elastica regularized Mumford-
Shah functional. More specifically, the proposed model has
the following features

� In the first stage, we solve the Euler’s elastica regu-
larized Mumford-Shah model, which is a high order
model, by making use of the augmented Lagrangian
method (ALM) [12], [11];

� In the second stage, we implement the K-means
clustering [13] to threshold the solution into different
phases. Special attention has been paid to images with
intensity inhomogeneity. We use the bias-corrected
fuzzy c-means method [14] to eliminate the effect of
bias field, which makes the model be able to segment
the images correctly.

Similar to [5], the proposed two-stage segmentation model is
flexible to the number of segments (K ≥ 2) and free to change
the value of K without recomputation of the first stage.

II. TWO-STAGE MUMFORD-SHAH MODEL

We briefly introduce the TSMS model in the first place. The
first stage of TSMS model is to find a smooth image g that can
facilitate the segmentation. In Mumford-Shah functional (1),

the boundary information of Γ, i.e., |Γ|, can be extracted using
the total variation and the solution of (1) is further restricted
to be a smooth function over the image domain. Therefore,
the last term of (1) reduces to the total variation of g in order
to keep the boundary information, and the second term of (1)
reduces to the integral over the entire domain Ω assuming that
g ∈W 1,2(Ω), respectively. For the definition of Sobolev space
W 1,2(Ω), see [15].

The variant convex Mumford-Shah proposed in [5] is given
as follows

ETSMS(g) =
η

2

∫
Ω

(f−g)2dx+
μ

2

∫
Ω

|∇g|2dx+
∫
Ω

|∇g| (4)

With the solution g solved in the first stage by (4), the
segmentation results are obtained by thresholding g with
proper threshold(s). The thresholds are identified in [5] is
automatically by K-means clustering method for arbitrary K
given by users. However, simply using the K-means clustering
may be not so satisfactory. It requires users to try different
thresholds for better segmentation results.

III. EULER’S ELASTICA REGULARIZED MUMFORD-SHAH

MODEL

A. Stage I: obtain the smooth solution g

Although the TSMS model works well for general images,
it fails for real images with specific properties, e.g., with high
noises, missing parts, intensity inhomogeneity. Therefore, we
modify the Mumford-Shah model by employing Euler’s elas-
tica as the regularization and obtain the following functional:

EEEMS(g) =
η

2

∫
Ω

(f − g)2dx+
μ

2

∫
Ω

|∇g|2dx

+

∫
Ω

[
a+ b(∇ · ∇g

|∇g| )
2
]|∇g|.

(5)

The main disadvantage of such high order model is the dif-
ficulty and complexity of computation. Therefore, we convert
the minimization problem (5) to the constrained optimization
problem by introducing new variables into the functional as

min
g,p,n

∫
Ω

(
a+ b(∇ · n)2)|p|+ μ

2

∫
Ω

|∇g|2 + η

2

∫
Ω

(f − g)2

s.t. p = ∇g; n =
p

|p| . (6)

ALM has been utilized in developing the fast algorithm
for Euler’s elastica energy in [11]. Similarly, to avoid the
difficulties in solving the Lagrangian functional of (6), a new
variable m is introduced, which satisfies m = n and |m| ≤ 1.
Here, the use of m with |m| ≤ 1 is a relaxation, the same
as [11]. Thus, the relationship |p| −m · p ≥ 0 holds, a.e., in
Ω. We can derive the augmented Lagrangian functional in the
following form

L(g,p,n,m;λ1,λ2,λ3) =

∫
Ω

(
a+ b(∇ · n)2)|p|

+
μ

2

∫
Ω

|∇g|2 + η

2

∫
Ω

(f − g)2 +

∫
Ω

λ1(|p| −m · p)

+ r1

∫
Ω

(|p| −m · p) +
∫
Ω

λ2 · (p−∇g) +
r2
2

∫
Ω

(p−∇g)2

+

∫
Ω

λ3 · (n−m) +
r3
2

∫
Ω

(n−m)2 + δR(m), (7)
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where r1, r2, r3 are positive parameters and λ1, λ2, λ3
are Lagrange multipliers. Moreover, the set R is defined as
{ m ∈ L2(Ω) | |m| ≤ 1 a.e. in Ω }, L2(Ω) := {m ∈ R

2 :∫
Ω
|m|2 < ∞} and δR is the characteristic function defined

on the set R as follows

δR(m) :=

{
0, m ∈ R,
+∞, otherwise.

We propose an alternative and iterative algorithm to solve
the augmented Lagrangian functional (7) as Algorithm 1.

Algorithm 1 The proposed ALM based algorithm

Set the starting values g1, p1, n1, m1, λ11, λ12 and λ13, let k = 1
and start (k+1)-th iteration, which includes the following steps
till convergence:

� Optimize gk+1 by fixing other variables

gk+1 := argmin
g

∫
Ω

η

2
(f−g)2+μ

2
|∇g|2+r2

2
(∇g−dk)2,

where dk = pk +
λk
2

r2
. The optimal condition is a

linear equation, which is solved by the fast Fourier
transform (FFT).

� Optimize pk+1 by fixing other variables

pk := argmin
p

∫
Ω

ck|p|+ r2
2
(p− qk)2,

where ck = a + b(∇ · nk)2 and qk = ∇gk+1 +
r1+λk

1

r2
mk − λk

2

r2
. There is the closed-form solution

for the minimization problem.

� Optimize nk+1 by fixing other variables

nk+1 := argmin
n

∫
Ω

b(∇·n)2|pk+1|+ r3
2
(n−hk)2,

where hk = (mk − λk
3

r3
). By applying a frozen co-

efficient method, the minimization problem is solved
by the FFT.

� Optimize mk+1 by fixing other variables

mk+1 := argmin
m

∫
Ω

r3
2
(m−(nk+1+

λk
3

r3
))2+δR(m),

which has the closed-form solution.

� Update λk+1
1 , λk+1

2 and λk+1
3 by

λk+1
1 = λk

1 + r1(|pk+1| −mk+1 · pk+1),

λk+1
2 = λk

2 + r2(p
k+1 −∇gk+1),

λk+3
3 = λk

3 + r3(n
k+1 −mk+1).

B. Stage II: determine the thresholds

In the second stage, the segmentation result is obtained
by thresholding the solution g with proper thresholds. The
K-means method is employed to determine the thresholds of
the solution g. More specifically, for images with intensity
inhomogeneity, we adopt the bias-corrected fuzzy c-means
method to eliminate the effect of bias field before the K-means
thresholding.

The bias-corrected fuzzy c-means models the solution g as
a combination of true intensities and a bias field as follows

gk = xk + βk, ∀k ∈ {1, 2, . . . ,M ×N}, (8)

where xk, gk are the true and observed (smooth solution in
the first stage)intensities at the k-th pixel, respectively, βk is
the bias field at the k-th pixel and M ×N is the total number
of pixel in the given image.

Compared to the standard fuzzy c-means (FCM) algorithm,
the bias-corrected FCM compensates inhomogeneity to allow
the labeling of a pixel to be influenced by the labels within its
neighborhood. The neighborhood effect acts as a regularization
and biases the solution towards piecewise-homogeneous label-
ing. The objective function for partitioning g into c clusters is
given by

EBCFCM =
c∑

i=1

M×N∑
k=1

up
ik‖gk − βk − vi‖2

+
α

NR

c∑
i=1

M×N∑
i=k

up
ik(

∑
gr∈Nk

‖gr − βr − vi‖2),

where {vi}ci=1 are the prototypes of the clusters and the array
[uik] = U represents a partition matrix (p is a weighting
exponent on each fuzzy membership), U ∈ U , namely,

U{uik ∈ [0, 1]
∣∣∣

c∑
i=1

uik = 1, ∀k, 0 <
M×N∑
k=1

uik < M ×N, ∀i}

and Nk stands for the set of neighbors that exist within a
window around xk and NR is the cardinality of Nk.

The optimization problem of bias-corrected FCM is given
in the following form

min
U,{vi}c

i=1,{βk}M×N
k=1

EBCFCM , s.t., U ∈ U . (9)

There are closed-form solutions for all the variables in (9).
More details of the implementation can be found in [14]. After
obtained the bias field, we eliminate the effect of intensity
inhomogeneity by subtracting it from the solution g. Then,
by the K-means method we separate the bias-corrected g into
different segments.

IV. NUMERICAL EXPERIMENTS

In this section, we describe the application of the proposed
Euler’s elastica regularized Mumford-Shah model with K-
means clustering (EEMS) and bias-corrected FCM (BCEEMS)
on synthetic and real medical images. For all tests of bias-
corrected FCM, we use the 8-neighborhood, i.e., NR = 8 and
set p = 2 and α = 1.

A. Comparisons with the TSMS model

Example 1: Incomplete letters ‘UCLA’. To illustrate the
advantage of Euler’s elastica in integrating missing or broken
parts, we apply the EEMS model to an image with incomplete
letters “UCLA”, as shown in Fig. 1 (a). Even though the incom-
plete letters can be easily recognized by human perception, the
TSMS model, which is based on total variation, fails to capture
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TABLE I. PRECISION AND SENSITIVITY OF NOISY IMAGE

SEGMENTATION.

Fig.3 (b) Fig.3 (f)
PRE SEN PRE SEN

TSMS 0.9422 0.9881 0.9925 0.9795
EEMS 0.9775 0.9881 0.9922 0.9944

the missing parts. By comparing our result with the result of
TSMS model, as given in Fig. 1 (b)-(g), we observe that our
method works better at connecting the missing information in
the given images.

(a) Given image

(b) TSMS solution g (c) TSMS K-means (d) TSMS contour

(e) Our solution g (f) EEMS (g) EEMS contour

Fig. 1. Incomplete letters ‘UCLA’. The parameters for the model (5) read
a = 10−2, b = 15.0, μ = 1.0, η = 0.5 while the parameters for ALM are
chosen as r1 = 2.0, r2 = 10.0, r3 = 1.0.

Example 2: Hand phantom image. The experiment in Fig.
2 validates that Euler’s elastica can help to achieve sub-pixel
segmentation accuracy. As demonstrated in Fig. 2 (e) and (f),
the EEMS model is able to identify the narrow gaps between
the two middle fingers, which stick together as the TSMS
model shown in Fig. 2 (b) and (c). The final contour of the
EEMS model in Fig. 2 (g) accurately reflects the true shape
of the hand phantom.

Example 3: Noisy image segmentation. We test the segmen-
tation models, i.e., TSMS and EEMS on two synthetic images
shown in Fig. 3. We add Gaussian white noise of mean 0
and variance 0.5 to both test images as shown in Fig. 3 (b)
and (f), respectively. Based on the K-means clustering, we
obtain the segmentation results of both the TSMS model and
EEMS model, which are displayed in Fig. 3. We tabulate the
precision and recall of the two experiments in Table I. Here,
precision (PRE) is defined as the fraction of the true positive
pixels to the segmented results, while sensitivity (SEN) is the
fraction of the true positive pixels to the ground truth of the
foreground. With the same sensitivity as the TSMS model, the
EEMS model increases the precision of Fig. 3 (b) significantly.
On the other hand, the EEMS model improves the sensitivity
of Fig. 3 (f) obviously when the similar precision is obtained
as TSMS. Therefore, the experiments can demonstrate that as
the regularization, Euler’s elastica performs better than total
variation in removing negligible dots such as noises.

(a) Given image

(b) TSMS: g (c) TSMS K-means (d) TSMS contour

(e) Our: g (f) EEMS (g) EEMS contour

Fig. 2. Hand phantom segmentation. The parameters for the model (5) read
a = 10−2, b = 2.0, μ = 1.0, η = 20.0 while the parameters for ALM are
chosen as r1 = 5.0, r2 = 20.0, r3 = 5.0.

(a) Ground truth (b) Noisy image (c) TSMS (d) EEMS

(e) Ground truth (f) Noisy image (g) TSMS (h) EEMS

Fig. 3. Noisy image segmentation. The parameters for the model (5) read
a = 10−2, b = 4.0, μ = 1.0, η = 1.0 for both test images while the
parameters for ALM are chosen as r1 = 1.5, r2 = 8.0, r3 = 2.5 and
r1 = 0.5, r2 = 2.0, r3 = 0.5 for (a) and (f), respectively.

B. Tubular images with intensity inhomogeneity

Example 4: Vessel images. We apply the proposed models
to medical images with tubular vessels in inhomogeneous
backgrounds. The vessels in the given image in Fig. 4 (a) have
elongated structures and are in an inhomogeneous background.
Firstly, we look at the solution g in the first stage of TSMS
and EEMS model, which are displayed Fig. 4 (b) and (d),
respectively. We can observe that the vascular structures in
Fig. 4 (d) seem more distinguishable than Fig. 4 (b), which is
also demonstrated by the K-means results in Fig. 4 (c) and (e),
respectively. Therefore, it shows that Euler’s elastica makes the
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Mumford-Shah functional able to locate meaningful elongated
vessels while prohibiting disproportionate fine details or noise.
However, the branches of the vessel from the K-means in Fig.
4 (e) seems thin and weak. Thus, we implement the bias-
corrected FCM to eliminate the effect of inhomogeneity in
the solution g and better segmentation result is obtained as
shown in Fig. 4 (f).

(a) Given image (b) TSMS solution g (c) TSMS

(d) Our solution g (e) EEMS (f) BCEEMS

Fig. 4. Tubular vessels segmentation. The parameters for the model (5) read
a = 10−3, b = 1.0, μ = 1.0, η = 10.0 while the parameters for ALM are
chosen as r1 = 3.0, r2 = 8.0, r3 = 1.0.

For vessel images in Fig. 5 (a) and Fig. 6 (a), some parts
of the vessel boundaries are quite weak. Although both the
TSMS and the EEMS model fail to segment the complete
vessel structures based on K-means clustering as shown in
Fig. 5 (c), (e) and Fig. 6 (c), (e), respectively, the EEMS
model gives the better results than the TSMS model. In this
case, we further apply the bias-corrected FCM to the smooth
solution g of EEMS shown in 5 (d) and fig. 6 (d). As shown
in Fig. 5 (f) and Fig. 6 (f), the BCEEMS model archives
satisfactory segmentation results for such images with intensity
inhomogeneity.

(a) Given image (b) TSMS solution g (c) TSMS

(d) Our solution g (e) EEMS (f) BCEEMS

Fig. 5. Tubular vessels segmentation. The parameters for the model (5) read
a = 10−3, b = 3.0, μ = 1.0, η = 1.0 while the parameters for ALM are
chosen as r1 = 0.08, r2 = 1.0, r3 = 1.0.

C. Multi-phase Segmentation

Example 5: CT angiography image. We begin the multi-
phase segmentation with a 2D maximum intensity projection

(a) Given image (b) TSMS: g (c) TSMS

(d) Our: g (e) EEMS (f) BCEEMS

Fig. 6. Tubular vessels segmentation. The parameters for the model (5) read
a = 10−3, b = 2.0, μ = 2.0, η = 1.0 while the parameters for ALM are
chosen as r1 = 0.1, r2 = 2.0, r3 = 0.5.

(MIP) image of a 3D CT angiography data in Fig. 7 (a). We
applied the three-phase segmentation models to extract the
vascular structures from the given MIP image. The segmenta-
tion result of the phase (phase 3) containing the aorta and a
branch of coronary artery from the TSMS, EEMS, BCEEMS
model are displayed in Fig. 7 (b), (c) and (d), respectively. We
observe that as the regularization, Euler’s elastica can identify
some finer details of peripheral vessels compared to TSMS and
the bias-corrected FCM can remove the effect of the intensity
inhomogeneity.

(a) Given image (b) TSMS (c) EEMS (d) BCEEMS

Fig. 7. Tubular vessels segmentation. The parameters for the model (5) read
a = 10−3, b = 2.0, μ = 0.5, η = 25.0 while the parameters for ALM are
chosen as r1 = 5.0, r2 = 15.0, r3 = 5.0.

Example 6: Brain MRI image. Intensity inhomogeneity is
also typical in MR images. There are three tissue classes
in MR images: cerebrospinal fluid, gray matter and white
matter. Thus, we implemented the four-phase segmentation
models on a brain MR image in Fig. 8 (a) with noise 7%
and the intensity non-uniformity (INU) 20%, which is from
McGill Brain Web, “http://www.bic.mni.mcgill.ca/brainweb/”.
The segmentation results of each phase obtained by TSMS,
EEMS and BCEEMS are shown in the second, third and fourth
row of Fig. 8, respectively. Correspondingly, we also display
the ground truth of each phase for the given MR image in the
last row of Fig. 8. From the figure, we can see that more
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details are segmented correctly using the proposed EEMS
and BCEEMS model. Furthermore, we compute both the
precision and sensitivity of the segmentation results in Table
II for the quantitative evaluation. Both precision and recall
agree with our hypothesis that Euler’s elastica can improve
the segmentation, especially when bias is eliminated by bias-
corrected FCM.

(a) Given image

(b) TSMS phase 1 (c) TSMS phase 2 (d) TSMS phase 3

(e) EEMS phase 1 (f) EEMS phase 2 (g) EEMS phase 3

(h) BCEE phase 1 (i) BCEE phase 2 (j) BCEE phase 3

(k) GT phase1 (l) GT phase2 (m) GT phase3

Fig. 8. Brain MRI segmentation. The parameters for the model (5) read
a = 10−3, b = 1.0, μ = 0.5, η = 15.0 while the parameters for ALM are
chosen as r1 = 0.08, r2 = 1.0, r3 = 0.1. GT denotes Ground Truth.

TABLE II. PRECISION AND SENSITIVITY OF BRAIN EXPERIMENT.

Phase 1 Phase 2 Phase 3
PRE SEN PRE SEN PRE SEN

TSMS 0.9515 0.9207 0.8531 0.8858 0.7976 0.8208
EEMS 0.9516 0.9212 0.8543 0.8858 0.7974 0.8315

BCEEMS 0.9412 0.9534 0.8906 0.8734 0.8034 0.8356

V. CONCLUSION

In this paper, we proposed an approach to image segmentation
that uses Euler’s elastica as the regularization to the Mumford-Shah

functional. The two-stage segmentation framework was applied to
solve the Euler’s elastica regularized Mumford-Shah model. In the
first stage, we computed a smooth solution of the variant Mumford-
Shah model by augmented Lagrangian method while in the second
stage, the K-means clustering was implemented to threshold the
solution into different regions. Compared to the Mumford-Shah model
relied on the total length regularization, Euler’s elastica has good
properties in interpolating missing parts and capturing fine elongated
structures, which are useful for fine medical image structure segmen-
tation. In addition, we address the intensity inhomogeneity widely
existing in medical imaging by the bias-corrected FCM. Shown in
the experiments, the proposed model outperforms the TSMS model
[5] in both image segmentation and denoising applications. Different
kinds of applications, such as tubular and irregular shaped, CTA and
MR images in different noise levels, are tested to demonstrate the
performance of the proposed model.
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