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Abstract 
With the recent explosion in the development of 

multimedia hardware capable of 3D display, 3D 

Picture Coding Sytems have assumed a pivotal role. 

While encoding techniques for stereo-scopic images is 

a well researched topic and compression standards 

such as MPEG provide variants to support it, 

compression of RGB-D data such as from the 

Microsoft Kinect sensor offers a number of unsolved 

challenges. Projected texture based active sensors 

such as the Kinect offer a number of advantages in 

comparison with traditional 3D capture systems. 

While not affecting the visible spectrum of the scene 

these sensors are capable of producing highly 

accurate 3D reconstructions of complex scenes (as 

well as novel viewpoints) - even those with 

homogeneous surfaces lacking textural features that 

form the foundation of stereoscopic range 

measurement systems. Conventional approaches to 

compressing the RGB and D images separately are 

suboptimal in terms of compression efficiency, 

bandwidth usage and scalability. On the other hand, 

state-of-the-art methods in the field are not suitable 

for low bandwidth applications, typical of mobile 

phone devices, on-field civilian and defense robotic 

systems, especially those operating on unreliable or 

high-loss wireless networks. In order to address these 

concerns, we present a novel RGB-D Cross-

Compression algorithm that can be used for static 3D 

scene reconstruction as well as intra-frame coding of 

3D videos. The algorithm detects salient edge-like 

structures in RGB and D images and perform cross-

coding across the modalities to yield a scalable system 

for 3D video coding. Results presented using the 

Microsoft Ballet and Breakdancers test sequences 

demonstrate the efficiency of the system in terms of 

compression rate, reconstruction quality and rate-

distortion characteristics. The scalability of the 

approach also makes it well suited for mobile and 

wireless applications. 

 

1. Introduction 
3D video coding has achieved prominence in recent 

years due to the large number of 3D display capable 

hardware. Mobile phones such as the HTC EVO 3D 

and the LG Optimus 3D are devices that are not just 

capable of 3D image acquisition, but also 3D display. 

3D television (3DTV) has also been in vogue the last 

few years and the technology has been rapidly 

growing. These systems for multi-view video (MVV), 

being predominantly based on stereoscopic image 

acquisition and display systems or similar approaches 

show poor performance in regions of homogeneous 

texture, where stereo-matching fails and are thus 

restricted in operation to applications which do not 

require full 3D user interaction or novel 3D viewpoint 

generation – free viewpoint video (FVV). With the 

advent of the Microsoft Kinect projected texture based 

active sensing system as well as other similar devices, 

such restrictions to the generation of 3D imagery are 

being largely overcome, resulting in the creation of 

efficient systems for Depth Image Based Rendering 

(DIBR) mechanisms. Nevertheless the compression 

techniques available for encoding such RGB-D 

imagery remains nascent, in comparison with 

techniques for encoding stereoscopic imagery/ video 

that are quite mature. 

State-of-the-art techniques in the field of encoding 

RGB-D imagery include [1], in which an optimal 

joint-bit allocation model based on the RGB and D 

images is estimated and used for compression. Other 

methods such as Locally Adaptive Resolution (LAR) 

[2] are targeted at providing visually pleasing surface 

reconstructions. This approach uses layered coding of 

depth maps using variable block size representations 

based on quad-trees. On the other hand, sparse 

representation schemes such as [3], use depth 

transform domain optimization (in this case, L1 norm 

minimization over the representation function) to yield 

the necessary encoding. Use of disparity maps instead 

of depth maps and depth propagation/ estimation has 

been studied in [4]. These approaches, as with 
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conventional approaches such as MPEG applied to 

depth maps suffer from edge smoothing and other 

artifacts. Edge sensitive depth image compression has 

been presented in [5]. This paper uses „Wedgelets‟ and 

„Platelets‟ for compression and is again based on 

quad-tree decompositions of the maps. 

Nevertheless, none of these methods are well suited 

for Kinect like depth sensors and especially for low 

bandwidth applications. Since the Kinect sensor 

suffers from depth edge localization errors, it is 

necessary to build a scheme that is robust to such 

errors and can make use of the high fidelity RGB data 

to localize depth edges. Furthermore, all the above 

approaches, while being suitable for compressing high 

bit-rate depth maps independently or in the form of 

multi-view video, lack features for cross-modal 

compression that can greatly reduce the bit rate, 

enabling low bandwidth applications.   

 

2. Algorithm 
The main contribution of this paper is in presenting 

an RGB-D Cross modality compression scheme that 

provides efficient compression by taking advantage of 

the structural content co-localization across the two 

sensing modalities. The presented scheme is also 

designed to be scalable and targeted at superior 

performance especially for low bandwidth applications 

such as for mobile phones or civilian and defense 

robots operating across unreliable wireless networks. 

We use the algorithm presented in [8] and applied to 

compression of infra-red imagery in [9] as the 

motivational basis of our approach. Similar to [9], we 

employ an edge-based structural content detection 

algorithm for pattern driven compression. While edge-

based approaches are admittedly expensive in the 

representation of highly textured scenes with low 

structural content, the trade-off in efficiency in relation 

to perceptual quality for edge based compression is 

particularly suited for our target application – low 

bandwidth compression with 3D structural fidelity 

preservation. The key components of the algorithm are 

presented as follows. 

 

2.1. Cross-modal Edge Detection 
The first step in the pipeline involves the 

detection of salient edges in the RGB-D image. To this 

end we employ a multi-scale version of the structural 

tensor [10] based canny edge detector that works 

across five channels (RG,B,D and DG- the depth 

gradient) to estimate RGB-D edges. The edge 

contribution from the depth gradient helps in the 

estimation of surface curvature or orientation changes 

while that from the depth images help detect depth 

jumps. While simply summing the differential 

structure across the various channels may result in 

cancellation of the component structures, tensors 

defined in the range 0 to π provide a mechanism to 

preserve the components by describing the local 

orientation of the gradients rather than the overall 

direction. We represent the RGB-D image as 𝒇 =
 𝑓𝑅 , 𝑓𝐵 , 𝑓𝐺 , 𝑓𝐷 , 𝑓𝐷𝐺 

𝑇 , the structure tensor is given by 
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where the subscript notation is used to denote partial 

derivatives and the weights 𝑤are associated with per-

pixel measurements – in our case, Gaussian scales. It 

should be noted that the elements of the tensor are 

invariant with respect to rotation and translation of the 

spatial axes. While it is possible to also build a 

photometric, shading invariant version of the tensor, 

for the given application of compressing scenes with 

typically large fields of view this is unnecessary.  

Eigen value analysis of the tensor results in two eigen 

values along with the prominent local orientation. 

𝜆1 =
1

2
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The direction of 𝜆1 indicates the prominent local 

orientation which is given as  

𝜃 =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛(

2𝒈𝑥 . 𝒈𝑦        

𝒈𝑥 . 𝒈𝑥        − 𝒈𝑦 . 𝒈𝑦        
)  

Non-maxima suppression on the 𝜆1 , the maximal 

eigen value, yields the required edge image. The 

composite edges are thus obtained as a combination of 

the edge gradients from the two sensing modalities. It 

can be expected that much of the edge contribution 

from the depth map overlaps with that from the color 

image. For the case of data from the Microsoft Kinect 

Sensor, it is expected that localization errors along the 

structural boundaries in the depth maps might create 

errors in the cross-modal edge combination process. 

To this end, we can refine the depth map using the 

scheme presented in [11] prior to edge detection.  

 

2.2. Contour Characterization 
The detected edges are then thinned and cleaned 

to yield cross-modal contours. Contours are 

characterized by their start and end points along with 

the profile of the RGB and D images along the 

contours. In the case of junctions and branch points, it 

is necessary to split the contour. Similar to [9] we 

choose the continuity of contours at junctions along 

paths that maximize the length of the edge chain, 

while resulting in a minimum gradient variation 

thereby enabling smooth transition between edge 

segments. The encoding of each contour includes the 
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geometric and intensity (RGB-D) profiles of the 

structural discontinuities in the image. The spatial 

profiles of the contours are listed with the primary end 

point chosen to be closer to the image plane origin. 

Furthermore, the contours are sorted with contours 

having starting points closer to the origin being higher 

on the list. This sorting helps optimize the coding 

process. In order to improve the coding efficiency of 

each contour, a piecewise linear approximation of the 

contour is used. The piecewise linear approximation is 

calculated using the spatial and the intensity profiles. 

For each contour, the values of position and intensity -

𝑖, 𝑗, 𝑟1 , 𝑟2 , 𝑔1, 𝑔2 , 𝑏1, 𝑏2 , 𝑑1, 𝑑2  and 𝜎 (the color channel 

blur) are stored and encoded at every anchor point 

(obtained by the piecewise approximation). The blur 𝜎 

can be computed as  

𝜎𝑖 ,𝑗 =    
𝑑

2
 

2

− 𝑠2 

where 𝑖, 𝑗 indicate the point locations, 𝑑 is the distance 

in pixels between extrema in 2
nd

 derivative map and 𝑠 

is the critical scale at the point. The subscripts 1 and 2 

for the intensity profiles indicate the high and low 

intensity values across the anchor point. Since the 

values can suffer from localization artifacts, we 

employ a linear interpolation on either side of the 

contour in a direction normal to it in order to obtain 

stable profile values. These values are selected such 

that they do not interfere with the neighboring edge 

pixel values. 

 

2.3. Scalable Contour Coding 
To provide for scalability in the encoding process, it is 

necessary to prioritize the contour list in terms of 

visual significance. Based on the available number of 

bits, it is possible to transmit fewer contours based on 

this priority to enable a scalable/progressive 

reconstruction at the decoder. Our ranking system uses 

a combination of multiple cues to prioritize the 

ranking of the contours. A geometric mean of the 

individual cue ranks is used to combine the ranks, 

resulting in the emphasis of contours with balanced 

ranks rather than those with high imbalance in 

rankings. The overall rank is based on the intensity 

difference ranks ( 𝑖𝑟 , 𝑖𝑔 , 𝑖𝑏 , 𝑖𝑑 , 𝑖𝑑𝑔 ),  - length of the 

contour (𝑙) and number of anchor points (𝑝) – in each 

larger values lead to numerically lower ranks. 

𝐶𝑟𝑎𝑛𝑘 =   𝑖𝑟 + 𝑖𝑔 + 𝑖𝑏 + 𝑖𝑑 + 𝑖𝑑𝑔  .
𝑙

𝑝
 

Since the spatial profile values, intensity profiles and 

the blur values of all contours are expected to be 

highly correlated within their respective profile 

domains, the profile sequences are encoded 

independently. Since the spatial location cannot be 

encoded in a lossy manner, so we chose to encode it 

using Differential Pulse Code Modulation (DPCM). 

Since the spatial lists have already been sorted and 

selected by the ranking system based on the available 

bit budget, this results in optimal coding of the spatial 

profile. A DPCM between edge chains also helps 

reduce the bandwidth requirements even further. For 

the case of the RGB and Depth intensity profiles a 1 

dimensional Discrete Cosine Transform (1D –DCT) is 

applied, followed by quantization (with different 

quantization levels for RGB and D) and truncation of 

terminating zeros. While the DC values resulting from 

the DCT are again subjected to DPCM, the resulting 

AC/DC values are encoded using CABAC (Content 

Adaptive Binary Arithmetic Coding). This results in 

optimal encoding of contours. The encoded contours 

can then be stored or transmitted progressively based 

on available bandwidth.  

 

2.4. Contour Decoding and RGB-D 

Reconstruction 
The Contour decoding follows the reverse process as 

the encoder and performs CABAC decoding followed 

by inverse DCT and inverse DPCM resulting in the 

generation of the spatial and intensity domain values. 

Using the profiles obtained, a skeleton image of 

contours is reconstructed for the R, G, B and D 

channels. The full image reconstruction from the 

skeleton is carried out using image inpainting and 

depth diffusion processes. The algorithm used for the 

reconstruction is described in [12]. An anisoptropic 

Laplacian heat diffusion partial differential equation is 

used for the inpainting based on the Iterative Back 

Substitution (IBS) algorithm. While the skeleton 

image provides the Neumann boundary conditions for 

the process, the Dirichlet boundary conditions are 

generated based on the image boundaries.  

 

3. Experiments and Results 
The designed codec was tested on a number of 

different RGB-D images/ image sequences, including 

those obtained from the Kinect. Figure 2 shows 

sample RGB and Depth images for compression, with 

an extremely low bit budget of 12 kbits (minimum 

operating bandwidth for MJPEG) and the 

reconstruction obtained after decoding. The PSNR 

values for the RGB and D images were roughly 31dB 

and 65 dB respectively. It can be seen from the figure 

that the performance of our codec is superior to 

traditional approaches such as MJPEG especially 

under conditions for the targeted application – 

operation under low bit rate/ unreliable networks. It 

can also be seen from Figure 1(a) that the system is 

scalable and rate-distortion characteristics fall off 
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gracefully at extremely low bit rates. Figure 1(b) 

shows the compression efficiency for intra-frame 

coding of two complete benchmark sequences 

(Microsoft RGB-D: Ballet, Breakdancers). While 

numbers for PSNR are similar form both schemes 

across the 100 frames, it can be seen from the results 

in Figure 2 that visual quality of the reconstructed 

images using our approach is significantly better using 

our approach. It should also be noted that our codec 

does not suffer from blocking, blurring or ringing 

artifacts typical of conventional coding schemes.  

  
Figure 1. (a) PSNR for a compression target of 12 kB for our codec 
(CC) and MJPEG (b) Rate distortion characteristics (PSNR vs BR) 

4. Conclusion and Future Work 
In this paper we have presented a novel algorithm for 

cross-modality compression of RGB-D images. While 

the greater proclivity for the usage of active range 

sensing devices such as the Microsoft Kinect, coupled 

with the phenomenal growth in 3D display systems 

have forced the need for better 3D compression, our 

system tries to address some of these concerns, 

especially in the domain of low bandwidth 

applications.  Future work involves extending the 

system to handle inter-frame and predictive coding for 

enhanced compression of full 3D videos. 
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Figure 2. (Left Pane) Color (Right Pane) Depth: (Within pane) Sample input frames (left), reconstruction using our approach (middle) and 

MJPEG (right) for 12kb combined bit rate. Notice realistic boundaries and color, perceptual fidelity with our approach, whereas results using 

MJPEG suffer from several artifacts. 
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