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Abstract

Indirect ImmunoFluorescence (IIF) is currently the
recommended method for the detection of antinuclear
autoantibodies(ANA). It is an effective technique to re-
veal the presence of auto immune diseases; however,
it is a subjective method and hence dependent on the
experience and expertise of the physician. Moreover,
inter-observer variability limits the reproducibility of
IIF reading. To this end, we propose feature extrac-
tion methods for automatic recognition of staining pat-
terns of HEp-2 images (provided as a part of the ICPR
2012 HEp-2 Cells Classification Contest) to develop a
Computer-Aided Diagnosis system and support the spe-
cialists’ decision . We compare the performances of
various individual and combined features and show that
a combination of HOG(Histogram of Oriented Gradi-
ents), Texture and ROI(Region of Interest) features are
best suited for our task achieving an overall accuracy of
91.13% using a Support Vector Machine as classifier.

1. Introduction

A large percentage of the world’s population suf-
fers from auto-immune diseases(AD) like diabetes mel-
litus(type 1), multiple sclerosis and rheumatoid arthri-
tis. The National Institutes of Health (NIH) estimates
up to 23.5 million Americans suffer from AD. Cur-
rently, Indirect ImmunoFluorescence (IIF) is the rec-
ommended method for the detection of antinuclear au-
toantibodies(ANA) [1]. It is an effective technique to
reveal the presence of auto immune diseases, however
in standard practice the patterns are interpreted manu-
ally which might result in errors due to subjective mis-
interpretation, physical fatigue of the physician and less
experience in the field. Moreover, inter-observer vari-
ability limits the reproducibility of IIF reading. Hence

Computer-Aided Diagnosis (CAD) systems comprising
of automatic recognition of staining patterns of HEp-2
images, can not only support the specialists’ decision,
it can also reduce variability and help to screen patients
reliably.

2. Previous Research

In the past decade, there has been a lot of work in the
direction of CAD systems for detection of ANA. Re-
searchers have concentrated on cell stain pattern recog-
nition [9, 10, 7, 5], mitotic cell detection [8], HEp-2
well pattern classification [11] and automation of the
entire IIF process [6]. Petra Perner [9] showed the feasi-
bility of an automated inspection system in 2001 using a
dataset of 105 samples. Subsequently Perner et al. [10]
experimented on 1041 cells and achieved an error rate
of 16.9% for a 6-class stain pattern classification using
a decision tree. Hsieh at al. [7] evaluated 1036 auto-
antibody fluorescence patterns from 44 IIF images that
were divided into six pattern categories (diffuse, periph-
eral, coarse speckled, fine speckled, discrete speckled
and nucleolar), achieving an accuracy of 80.3%. El-
bischger et al. [5], achieved an accuracy of 90.25% us-
ing 9 hand-crafted features and a Mahalanobis distance
classifier for 17 pattern classes. We however note that
features like perimeter ratio and area ratio, take into
account the overall mean ROI area and perimeter and
hence the training and testing dataset are not totally in-
dependent.

Literature survey shows that in previous research, the
HEp-2 florescence image dataset and the staining pat-
tern types have been variable. Hence, to make a fair
comparison possible, we elaborate on various feature
extraction methods for the automatic classification of 6
florescence patterns (Fig. 1) on the dataset provided for
the ICPR 2012 HEp-2 Cells Classification Contest.
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3. Our Approach

3.1. HEp-2 Cell Image Data

The contest HEp-2 images were acquired by means
of a fluorescence microscope (40-fold magnification)
coupled with a 50W mercury vapor lamp and with a dig-
ital camera (SLIM system by Das srl). The images have
a resolution of 1388x1038 pixels and a color depth of
24 bits. Specialists manually segmented and annotated
each cell at a workstation monitor, and reported data on
fluorescence intensity and staining pattern. The dataset
is constituted by 28 images, which contain 1457 cells.

Figure 1: This figure illustrates the six types of cell
staining patterns: (from left to right) Homogeneous,
coarse-speckled, fine-speckled, nucleolar, centromere
and cytoplasmatic

Participants received 14 out of the 28 images to be
used as the training set which contains 721 HEp-2 cell
images. There are six staining patterns (see Fig. 1), the
distribution being 208 Centromere, 109 Coarse Speck-
led, 58 Cytoplasmatic, 94 Fine Speckled, 150 Homo-
geneous and 102 Nucleolar patterns. This dataset con-
tains 325 intermediate and 396 positive intensity im-
ages. Since the test set will be released after the confer-
ence, we conduct 10-fold cross-validation experiments
on the training set and report our results.

3.2. Feature Extraction

In this section, we explore the performance of vari-
ous features like SURF (Speeded-Up Robust Features)
in a bag of words (BoW) model, texture- and ROI (Re-
gion of Interest)-based features and Histogram of Gra-
dient (HOG) features. We convert the given RGB im-
ages into grayscale by eliminating the hue and satura-
tion information while retaining the luminance. This
is our only pre-processing step. In the subsequent sub-
sections we discuss each feature extraction method in
detail and finally present our classification results in
Section 4.

1) Speeded-Up Robust Features (SURF) : SURF is
a robust image detector and descriptor [2] that has been
widely used in computer vision tasks like object recog-
nition or 3D reconstruction. We use the openCV [3]
implementation of SURF to detect key-points (setting
Hessian threshhold of 1) and extract descriptors from

each image. We create a vocabulary of features by clus-
tering the training descriptors into 1000 bins and then
create a histogram of responses for each test image to
words in the vocabulary, resulting in a feature vector of
length 1000. We use the Bag of Words (BoW) classes
provided in openCV2.x to extract these features.

2) ROI-based Features: The dataset contains a bi-
nary mask for each cell, which corresponds to the Re-
gion Of Interest(ROI). We extract region based fea-
tures namely area, eccentricity, major and minor axis
length and perimeter of the region. We also extract
the standard deviation of the gray values in the ROI,
the 30th (P30) and 60th (P60) percentiles of the gray
values in the ROI (the P -th percentile of N ordered
values arranged in ascending order is the n−th value
where n = round( P

100 ∗N + 1
2 )), the percentile range

(Prange = P60 − P30), and the roundness of the ROI
(r = 4 ∗ π ∗ area/perimeter). Some of these features
are inspired by [5]. We scale all the features between 0
and 1, making sure to use the training set scaling factor
for the corresponding test set in each of the 10 cross-
validation folds, thus ensuring that the training phase is
completely unbiased by the test set.

3) Texture-based Features: We extract four well es-
tablished texture features : contrast, homogeneity, cor-
relation and energy from the GLCM (Gray-Level Co-
occurrence Matrix) matrices constructed in 8 directions,
using 32 bins/levels to scale the images. Mathemati-
cally, a GLCM matrix G is defined over an n xm image
I , parameterized by an offset (∆x,∆y) as :

G∆x∆y(i, j) =

n∑
p=1

m∑
q=1


1, if I(p, q) = i and

I(p+ ∆x, q + ∆y) = j

0, otherwise
(1)

We also extract the image entropy, the maximum and
minimum values of local entropy, along with the max-
imum and minimum values of local standard deviation
of the gray-levels. We scale all the features between 0
and 1, similar to that of the ROI-based features.

4) Normalized HOG Features: Histogram of Ori-
ented Gradients (HOG) are feature descriptors used
extensively in computer vision and image processing.
This technique counts occurrences of gradient orienta-
tion in localized portions (windows) of an image. In
our approach, given a masked cell image, we divide it
into 6x6 = 36 sub-windows and fix the bin size to 36,
resulting in a vector of length 1296.

4. Experimental Results and Discussion

To test the performance of the features extracted,
we model multi-class SVM (Support Vector Machine)
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Table 1: Confusion matrices for combined features using SVM as classifier (rows represent ground truth)

(a) SURF + Texture features

HO FS CS NU CY CE
HO 124 17 3 1 0 5
FS 27 58 5 0 1 3
CS 1 1 96 1 5 5
NU 0 2 1 86 3 10
CY 0 1 0 2 53 2
CE 3 7 8 7 4 179

(b) HOG+Texture features

HO FS CS NU CY CE
HO 135 10 3 0 1 1
FS 21 70 0 1 0 2
CS 0 1 106 0 2 0
NU 0 0 3 87 0 12
CY 0 0 7 0 50 1
CE 1 2 0 7 0 198

(c) Texture+ROI features

HO FS CS NU CY CE
HO 139 8 3 0 0 0
FS 25 66 0 0 0 3
CS 0 1 106 0 0 2
NU 1 0 1 90 0 10
CY 0 1 3 2 52 0
CE 2 2 4 3 0 197

(d) HOG+Texture+ROI features

HO FS CS NU CY CE
HO 136 11 2 0 1 0
FS 20 70 0 2 0 2
CS 0 1 108 0 0 0
NU 0 0 1 90 0 11
CY 0 0 6 0 52 0
CE 0 2 1 4 0 201

classifiers [4] for each of the 10-folds. Through-
out our experiments, the kernel used is linear and
the six classes are Homogeneous(HO), Fine Speck-
led(FS), Coarse Speckled(CS), Nucleolar(NU), Cyto-
plasmatic(CY) and Centromere(CE).

The confusion matrices for the combined features
are shown in Table 1 and the detailed accuracy results of
our 10-fold cross-validation experiments are tabulated
in Table 2. We observe that the coarse-speckled pattern
is the simplest to distinguish while the fine speckled is
the hardest and is very often wrongly classified as ho-
mogeneous. Upon close inspection, we see that the fine-
speckled patterns are indeed very similar to the homo-
geneous patterns. Moreover, we can also see that posi-
tive intensity images show higher accuracies than the in-
termediate ones, with HOG features being the most ro-
bust to intensity variation. Hence, combining the HOG,
Texture and ROI features we obtain a robust pattern
recognition system, that shows a high overall accuracy
of 91.13%, where the coarse speckled pattern shows the
highest accuracy of 99.08% and the fine-speckled pat-
tern shows the lowest accuracy of 74.47%.

To complete the assessment of our features, we in-
put our combined feature-set to various classifiers and
illustrate the results in Table 3. The first two classifiers
are 3-layer Artificial Neural Networks. ANN 600 12
has 600 and 12 nodes in the first and second hidden lay-
ers respectively, while ANN 1000 20 has 1000 and 20.
The third is an SVM, which is the same as explained
earlier. The next four are k-Nearest Neighbor classifers
with k=3 or k=4, and the distance measure as cosine or

Euclidean. The final classifier is a simple Naive Bayes.
The high accuracies shown by all the classifiers reiter-
ates the utility of our combined feature set for the task
of cell staining pattern recognition.

5. Conclusion

We have proposed a composite feature set for the
automatic classification of HEp-2 florescence patterns.
Our features are a concatenation of HOG(Histogram
of Oriented Gradients), Texture- and ROI(Region of
Interest)-based features, effectively achieving an overall
accuracy of 91.13% using a Support Vector Machine as
classifier. In this paper we not only elaborately discuss
the feature extraction process, we also experiment on a
wide range of classifiers to prove the utility of these fea-
tures. Moreover, the florescence dataset we have used,
is the one provided for an ICPR 2012 contest, making
fair comparison between methods possible.
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Table 2: This table compares the 10-fold cross-validation results of various features for HEp-2 cell staining pattern
classification. It shows the intensity-wise, class-wise and overall accuracy (in percentage) for individual and combined
features, using SVM as classifier.
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