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Abstract

In this paper, we propose a statistical approach
for mitosis detection in breast cancer histological im-
ages. The proposed algorithm models the pixel inten-
sities in mitotic and non-mitotic regions by a Gamma-
Gaussian mixture model and employs a context-aware
post-processing in order to reduce false positives. Ex-
perimental results demonstrate the ability of this simple,
yet effective method to detect mitotic cells in standard
H&E stained breast cancer histology images.

1 Introduction

Detection of Mitotic Cells (MCs) in breast
histopathology images is one of three components
(the other two being tubule formation, nuclear pleo-
morphism) required for developing computer assisted
grading of breast cancer tissue slides [2]. This is very
challenging since the biological variability of the MCs
makes their detection extremely difficult (see Figure 1).
Additionally, if standard H&E staining is used (which
stains chromatin rich structures, such as nucleus,
apoptotic and MCs dark blue), it becomes extremely
difficult to detect the later given the fact that former
two are densely localized in the tissue sections. As a
consequence, two categories of relevant works have
been reported in literature. One that use an additional
stain (e.g. PHH3) to stain MCs exclusively, and detect
exclusively stained MCs in the images [7]. Other that
use a video sequence to detect mitotic events over
time by incorporating spatial and temporal information
[3]. Since the exclusive stain costs additionally and
videos are not at all used in standard histopathological
practices, therefore, a gap exists in literature.

In this paper, a robust MCs detection technique
is developed and tested on 35 breast histopathol-
ogy images, belonging to 5 different tissue slides.
To the best of our knowledge, there is not exist-
ing method in the literature for detection of MCs in
standard H&E stained breast histology images. The
proposed method mimics a pathologist’s approach to
MCs detection under microscope. The main idea is
to isolate tumor region from non-tumor areas (lym-
phoid/inflammatory/apoptotic cells), and search for
MCs in the reduced space by statistically modeling
the pixel intensities from mitotic and non-mitotic re-

gions. In order to further enhance the positive predictive
value (PPV), Context Aware Post-Processing (CAPP)
has been introduced. The experimental results show
that the proposed system achieves a high sensitivity of
0.82 with PPV of 0.29. Employing CAPP on these re-
sults produce 241% increase in PPV at the cost of less
than 15% decrease in sensitivity.

2 The Proposed Algorithm

2.1. Stain Normalization

Tissue staining is commonly used to highlight dis-
tinct structures in histology images. Among many dif-
ferent stains, Hematoxylin & Eosin (H&E) is one of the
most commonly used. It selectively stains nuclei struc-
tures blue and cytoplasm pink. Although staining en-
ables better visualization of tissue structures, however
due to non-standardization in histopathological work
flow, stained images vary a lot in terms of color and
intensity. Stain normalization is used to achieve a con-
sistent color and intensity appearance. Among several
approaches reported in literature, we used [5] to normal-
ize the color and intensity of breast histology images.

2.2. Tumor Segmentation

Breast Cancer histology images can be divided into
two regions: tumor and non-tumor. Mitosis events are
more likely to exist in tumor regions. Therefore, an
intelligent mitosis detection system must first remove
non-tumor areas from the tissue slide in order to min-
imize the search space for MCs. We have developed

Figure 1. How hard is it to identify MCs in breast
histology images? First 3 images (from left) are MCs
and last 2 images are non-mitotic images.
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a feature based texture segmentation framework (Ran-
PEC: Random Projections with Ensemble Clustering
[4]) to segment tumor regions. Broadly, the algorithm
follows the following pipeline: (1) A library of texture
features is computed over a range of scales and orien-
tations, (2) low dimensional embedding (using Random
Projections) is performed to avoid over fitting and curse
of dimensionality, and finally (3) tumor segmentation is
performed in low dimensional space. This produces an
accurate and totally unsupervised tumor segmentation.
On our dataset, we achieved hight sensitivity of 93%
(i.e. 215 out of 231 mitotic cells were retained in the tu-
mor areas obtained as a result of tumor segmentation).

2.3. Statistical Modeling of Mitotic Cells

MCs appear as relatively dark, jagged and irregularly
textured structures (see Figure 1). Due to sectioning
artifacts, some appear too dim to notice with a naked
eye. In terms of shape, color and textural character-
istics, lymphoid/inflammatory cells and apoptotic cells
that are densely present in tissue slides possess almost
similar characteristics, thus could easily be confused
with MCs.

In this paper, we propose Gamma-Gaussian Mixture
Model (GGMM) for detecting MCs in breast histology
images. Image intensities (L channel of La*b* color
space) are modeled as random variables sampled from
one of the two distributions; Gamma and Gaussian. In-
tensities from MCs are modeled by a Gamma distribu-
tion and those from non-mitotic regions are modeled
by a Gaussian distribution. The choice of Gamma and
Gaussian distribution is mainly due to the observation
that the characteristics of the distribution match well
with the data it models (see Figure 2).

2.3.1 Gamma-Gaussian Mixture Model

Figure 2 shows two marginal distributions (solid lines)
and their fitted models (dotted lines). The left and
right marginal distributions show the probability distri-
butions of pixels belonging to mitotic and non-mitotic
regions respectively. Close fit to the marginal distri-
butions was achieved by GGMM. The GGMM is a
parametric technique for estimating probability density
function. In our context, it can be formulated as follows.

For pixel intensities x, the proposed mixture model
is given by:

f (x; θ) = ρ1Γ(x;α, β) + ρ2G(x;µ, σ) (1)

where ρ1 and ρ2 represent the mixing proportions
(priors) of intensities belonging to mitotic and non-
mitotic regions, and ρ1 + ρ2 = 1. Γ(x;α, β) rep-
resents the Gamma density function parameterized by
α (the shape parameter) and β (the scale parameter).
G(x;µ, σ) represents Gaussian density function param-
eterized by µ (mean) and σ (standard deviation). θ =
[α, β, µ, σ, ρ1, ρ2] represents the vector of all unknown
parameters in the model.

2.3.2 Parameter Estimation

In order to estimate unknown parameters(θ), we employ
maximum likelihood estimation (MLE). Given image

Figure 2. Marginal distributions (solid line) and
fitted models (doted lines) by the two-component
Gamma-Gaussian Mixture Model

intensities xi, i = 1, 2, ..., n where n is number of pix-
els, log-likelihood function (`) of parameter vector θ is
given by

` (θ) =

n∑
i=1

log f (xi; θ) (2)

where f (xi; θ) is the mixture density function in equa-
tion (1). The MLE of θ can be represented by

θ̂ = argmax
θ

`(θ) (3)

A convenient approach to obtain a numerical solution
to the above maximization problem is provided by the
Expectation Maximization (EM) algorithm [1]. In our
context, the EM algorithm can be set up as follows.

Let zik, k = 1, 2, be indicator variables showing the
component membership of each pixel xi in the mixture
model (1). Note that these indicator variables are hidden
(unobserved). The log-likelihood (2) can be extended as
follows:

`c (θ) =
∑n
i=1

∑2
k=1 zik log ρk

+
∑n
i=1 {zi1 log [Γ(xi;α, β)]

+ zi2 log [G(xi;µ, σ)]}
(4)

The EM algorithm finds θ̂ iteratively, as outlined in Al-
gorithm 1. Let θ(m) be the estimate of θ after m it-
erations of the algorithm. The EM algorithm seeks to
find the MLE of the marginal likelihood by iteratively
applying Expectation and Maximization steps.

2.4. Classification

The posterior probabilities of a pixel xi belonging to
class 1 (Mitotic) or 2 (Non-Mitotic) are calculated as
follows,

pi1 = ρ1Γ(x;α,β)
ρ1Γ(xi;α,β)+ρ2G(xi;µ,σ)

pi2 = 1− pi1
(9)

Given the pixel-wise posterior probability maps, Otsu
thresholding is then used to classify mitotic and non-
mitotic pixels. It was found empirically that the area of
mitotic cell was between 60 and 1, 000 pixels. There-
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Algorithm 1 Expectation Maximization (EM)

1: Expectation Step (E step): Calculate the ex-
pected value of the log-likelihood function `c (θ),
with respect to P

(
z|x, θ(m)

)
, where z =

{zik, i = 1, 2, ..., n, k = 1, 2}. The conditional
expectation can be given as:

Q
(
θ; θ(m)

)
=

∑n
i=1

∑2
k=1 w

(m)
ik log ρk

+
∑n
i=1

{
w

(m)
i1 log [Γ(xi;α, β)]

+ w
(m)
i2 log [G(xi;µ, σ)]

}
(5)

where

w
(m)
i1 =

ρ
(m)
1 Γ

(
xi;α

(m), β(m)
)

f
(
xi; θ(m)

) , (6)

and

w
(m)
i2 =

ρ
(m)
2 G

(
xi;µ

(m), σ(m)
)

f
(
xi; θ(m)

) (7)

are the conditional expectations of zik.
2: Maximization Step (M step): The M-step max-

imizes the function Q
(
θ; θ(m)

)
with respect to θ

using a numerical optimization.

θ(m+1) = argmax
θ

Q(θ, θ(m)) (8)

3: Convergence Criteria: The above two steps are
repeated until

∥∥θ(m+1) − θ(m)
∥∥ < ε for a pre-

specified value of tolerance ε.

fore, area thresholding is performed to remove all po-
tentially mitotic regions having area out of this range.

2.5. Context-Aware Post-processing

The results produced as a result of the algorithmic
steps stated so far achieve 86% sensitivity, however
given a large no of similar looking objects (apoptotic
cells, lymphoid/inflammatory cells etc), a number of
false positives (FPs) are also obtained. In order to re-
duce the FPs without significantly reducing sensitiv-
ity, CAPP is performed on the classification results. A
small context window (see Figure 3) is defined around
the bounding box of each potentially mitotic cell. In
each context window, four representative features are
computed over a set of textural features. The represen-
tative features are used to train a Support Vector Ma-
chine (SVM) classifier using a Gaussian kernel. The
trained classifier is then used to predict unseen candi-
date contexts of MCs.

Figure 3. Four examples of 50× 50 context patches,
cropped around the bounding box of candidate MCs
(detected using the proposed algorithm). First 2 (from
left) are mitotic, last 2 are false positives.

3 Experimental Results and Discussion

Our experimental dataset consisted of 35 digitized
images of breast cancer biopsy slides with paraffin em-
bedded sections stained with Hematoxylin and Eosin
(H&E) and scanned at 40× using an Aperio ScanScope
slide scanner. After stain normalization, background re-
moval and unsupervised tumor segmentation over all
35 images, seven images were selected to extract mi-
totic and non-mitotic pixel intensities (L channel of
La*b* color space) for model fitting using GGMM. We
chose 500 iterations and tolerance (ε = 0.01) for the
EM algorithm. Although EM provides estimates of
priors (ρ1 and ρ2), a more accurate estimate of priors
(ρ1 = 0.0014 and ρ2 = 0.9986) was used based on
the ratio of mitotic and non-mitotic data used for model
fitting.

The set of textural features extracted from a window
of size 30× 30 pixels around the bounding box of each
candidate mitosis are as follows: 32 PG features (16
orientations, 2 scales) [6], 1 roughness feature, 1 en-
tropy feature. From each of these 34 features, 4 repre-
sentative features were computed: (1) mean, (2) stan-
dard deviation, (3) skewness, (4) kurtosis. This gave a
136−dimensional features vector for each pixel inside
the context window. The resulting 136 dimensional vec-
tor was used in training and testing of SVM.

Since the data consisting of candidate potential mi-
totic cells, identified before CAPP was applied, was
unbalanced (mitotic-29.1%, non-mitotic-70.9%), there-
fore a balanced mix of mitotic and non-mitotic exam-
ples were randomly selected as training data. A total
of 69.90% of data was used for training and remaining
30.10% for testing. Grid search was used to find opti-
mal parameters for the Gaussian kernel of the in SVM.
A higher penalty for misclassification in the SVM was
set for mitotic class, since the original data was unbal-
anced. Table 1 provides details of the quantitative re-
sults obtained with a five-fold cross-validation. Accord-
ing to these results, more than 200% of Positive Predic-
tive Value (PPV) was enhanced at the cost of less than
15% reduction in sensitivity.

4 Conclusions

In this paper, we presented a Gamma-Gaussian Mix-
ture Model (GGMM) for detection of mitotic cells in
breast cancer histopathological images. In addition, we
introduced Context-Aware Post Processing (CAPP) as a
tool to increase the Positive Predictive Value (PPV) with
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(a) (b) (c) (d)

Figure 5. Visual results of MC detection in a sample image: (a) Original image with ground truth marked MCs shown in
yellow color; (b) Results of Tumor segmentation (as outlined in Section 2.2) where non-tumor areas are shown in a slightly
darker contrast with blue boundaries; (c) Results of MC detection (in yellow color) without CAPP (Sensitivity= 0.87,
PPV= 0.54) and (d) Results of MC detection (in yellow color) with CAPP (Sensitivity= 0.87, PPV= 0.87).

Figure 4. Plot of sensitivity vs. PPV when area-
threshold is varied on the candidate MCs. High sen-
sitivity and low PPV is obtained when small values of
area-threshold were used. Table 1 shows how intro-
duction of CAPP appreciates PPV without significantly
degrading sensitivity.

Table 1. Quantitative Comparison of sensitivity and
PPV with and without using CAPP for a fixed value of
area threshold = 120 over 35 breast histology images
containing 231 mitotic cells. By employing CAPP,
PPV is doubled on unseen data, without drastically re-
ducing the sensitivity (i.e. less than 15% only).

Without CAPP With CAPP
Sensitivity 0.82 0.72

PPV 0.29 0.70

a minimal loss in sensitivity. We evaluated the perfor-
mance of the proposed detection algorithm in terms of
sensitivity and PPV over a set of 35 breast histology im-
ages selected from 5 different tissue slides and showed
that a reasonably high value of sensitivity can be re-
tained while increasing the PPV. Our future work will
aim at increasing the PPV further by modeling the spa-
tial appearance of regions surrounding mitotic events.
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