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Abstract

We use images that have been collected using an
Internet search engine to train color name models for
color naming and recognition tasks. Considering color
histogram bands as being words of an image and the
color names as classes, we use the supervised latent
Dirichlet allocation to train our model. To pre-process
the training data, we use state-of-the art salient object
detection and a Kullback—Leibler divergence based out-
lier detection. In summary, we achieve state-of-the-art
performance on the eBay data set and improve the simi-
larity between labels assigned by our model and human
observers by approximately 14 %.

1 Introduction

Color is undoubtedly one of the most common
and important visual attributes used in natural human-
human communication to communicate and reference
objects. There even exist psychophysical and neuro-
physical determinants that lead to a limited set of basic
color terms across all languages from which all other
color terms are considered to be derivatives (see [2,9,
10]; see Fig. 2). Consequently, it is an important aspect
of natural human-computer interaction to reliably name
and recognize colors. For example, this can simplify
user interfaces [7], it makes it possible to direct the at-
tention in human-robot interaction [12], it is an impor-
tant information in the context of image retrieval [1],
and allows to assist visually impaired people [14].

In this contribution, we describe how we learn to
name colors using a weakly labelled training data set
that has been acquired using Google’s search engine.
Using images from the web has several advantages such
as that, for example, the training data has a high vari-
ability which leads to robust classifiers, the collection
of such a data set is cheap, and it is possible to flexibly
learn new color names by automatically gathering the
corresponding data using Internet search engines.
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We extend the previous work in several aspects (see
[1,13,15,16]): We apply state-of-the-art salient object
detection to estimate the image region that is most likely
described by the image’s weak label. We use Kullback—
Leibler divergence ratios to remove outliers from the
training data set. We propose the use of the supervised
latent Dirichlet allocation in place of the probabilistic
semantic latent analysis with background class.

2 Related Work

Learning object categories and attributes (e.g. [5, 6,
15, 17]) with data that has been gathered from the Inter-
net has attracted a considerable amount of research in-
terest throughout the last decade. Most closely related
to our contribution' is the work by Weijer ez al. [15, 16]
and Schauerte et al. [13] that focuses on learning to as-
sign color names to image regions. Both authors con-
sider the color histogram bands to be “words” of an im-
age and the color terms as “topics”. Consequently, doc-
ument analysis methods such as, e.g., the probabilistic
latent semantic analysis [8] and latent Dirichlet alloca-
tion (see [3]) can be applied to learn the association be-
tween the color distribution of image regions and the
corresponding color names. Weijer et al. uses a modifi-
cation of the probabilistic latent semantic analysis [8]
to learn the color distributions of the 11 English ba-
sic color terms [15, 16]. Schauerte et al. introduces a
probabilistic HSL transformation that transforms artifi-
cial images in such a way that the characteristic of the
color distribution is more similar to that of natural im-
ages [13]. Furthermore, a sampling mechanism based
on the probabilistic 2 distance was proposed to remove
outliers in the training data set [13].

Topic models determine a low dimensional represen-
tation of data under the assumption that each data point
can exhibit multiple components, i.e. “topics” (see
[17]). Probabilistic latent semantic analysis (PLSA)
statistically analyzes the relationships between a set of

IPlease see the work by Benavente et al. [1] for an overview of
computational color naming approaches.



documents and the terms they contain to produce a set
of topics [8]. Weijer et al. adapted PLSA in two ways
[15, 16]: First, they directly linked the topics with the
class labels, effectively turning PLSA into a supervised
multi-class learning approach. Second, they introduced
a background class that is shared across all topics and
reflects that the images often contain a foreground ob-
ject on a (simple) background, see Fig. 1 and 2. How-
ever, PLSA has two main deficits: First, it is known
for overfitting problems. Second, it is not a generative
model of new documents, although being a generative
model of the documents in the collection it is trained on.
Both aspects are problematic for our application. The
latent Dirichlet allocation (LDA; see [3]) is closely re-
lated to PLSA, except that it assumes that the topic dis-
tribution has a Dirichlet prior. Most importantly, LDA is
a generative model for new documents. Blei et al. intro-
duced supervised LDA (SLDA), which is able to learn
the topic distributions and associate them with labels in
a supervised fashion [3]. Multi-class SLDA is an exten-
sion of SLDA and was introduced by Wang et al. [17].
It combines generative and discriminative methods, and
it allows to work with discrete class labels such as, e.g.,
color terms as in our application.

3 Learning Color Models

Similar to learning topics in bag-of-word models in
text analysis, we try to learn color terms Z = {zy, ...,zx }
in a bag-of-pixel representation, i.e. a color histogram.
Images and image regions D = {d,...,dy} are rep-
resented by histograms whose bins are interpreted as
words W = {wy,..,wy }. Each image d is (weakly) la-
belled with its color term [; = ¢.

3.1 Salient Object Detection

To support the learning process, it is beneficial to
suppress image content that is not related to the label we
want to learn. To this end, Weijer et al. suppress pixels
with the same color as the image border (see [16]). Al-
ternatively, the pHSL transformation by Schauerte et al.
effectively reduces the influence of the often monochro-
matic background by distributing it over a wide range of
histogram bins [13].

Following the approach by Weijer et al. (see [16]),
we first suppress pixels that have a similar color as
the image border. Despite its simplicity this method
works well for “artificial” images, see Fig. 1 (middle
row). A background is detected, if the border color’s
mean standard deviation over all image channels is be-
low a threshold of 0.01 (RGB in [0, 1]*). Then, we sup-
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Figure 1. Example images (top) with their
estimated foreground mask (middle) and
salient object detection (bottom).

yellow

press all pixels whose distance to the mean image bor-
der color is less than 0.01 (see Fig. 1).

However, the simple background suppression does
not work for complex or natural images, see Fig. 1 (bot-
tom row). Therefore, we use the salient object detec-
tion method by Cheng et al. [4] to estimate the image
regions that most likely contain the object of interest.
We use the saliency map that is provided by Cheng’s
algorithm to weight each pixel’s entry in the histogram.
This way, image regions that are likely to contain the
target concept have a higher influence than regions that
are unlikely to contain the target object (see Fig. 1).

3.2 Outlier Reduction

We try to determine outliers in the training data set
by estimating an initial word observation model P(w|z)
and subsequently removing images whose distribution
diverges from the initial estimate (see Fig. 2). For this
purpose, it is possible to use probability distribution dis-
tances such as, e.g., the x2 distance (as in [13]) or the
Kullback-Leibler divergence (see [11]). The Kullback—
Leibler divergence Dk (P||Q) (KLD), also known as
relative entropy, is a non-symmetric measure of the
difference between two probability distributions P and
Q. From an information theoretic perspective the KLD
measures the expected number of additional bits that
would be required to code samples using a code based
on Q instead of P. Using the mean probabilities as ini-
tial models P'(w|z) for the color terms, we calculate the
KLD between each initial model and document

dg (P (2),P(-|d)) = ZP(wld)ln;((vav'rg (D
S 11vd Y Pl @
eD,lg=z



White

Black Grey Red Green

Blue

Pink Purple  Brown

Figure 2. Rows 1-3: Example images from the Google-512 data set [13] for each of the 11 basic
English color terms (3rd row: outliers). Row 4: Example images from the eBay data set [15].
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Rf(dLD becomes smaller the better the initial model of
term z describes the image, compared to the alternative
terms 7. Consequently, Rf(dLD is greater than 1, if an-
other color term z describes the document d better. This
way, we can use a pre-defined amount of documents
with the lowest KLD ratios to train the final models.

3.3 Learning and Classification

In contrast to Weijer’'s PLSA-bg [15], multi-class
SLDA? does not explicitly associate the latent variables
with the class labels [17]. Instead, SLDA uses the topic
assignments of each histogram band as latent features
for classification, effectively combining aspects of gen-
erative and discriminative classification. Consequently,
during training SLDA learns topics that are predictive
for the class labels in combination with class coeffi-
cients for each topic. In order to being able to assign
class labels, i.e. color names, to image regions, it uses
softmax regression on basis of the topic assignments,
the learned class coefficients, and the topic frequencies.

4 Evaluation

We use the Google-512 data set [13] to train our
color term models. The data set consists of 512 im-
ages that were collected using Google’s image search

Due to the complexity of multi-class SLDA’s learning and infer-
ence procedure (please also consider the limited number of available
pages), we decided to keep our description short and would like to
refer the interested reader to the original work by Wang et al. for al-
gorithm details (see [17] and also [3]).
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for each of the eleven basic English color terms (see
Fig. 2). We use the eBay data set [15] to evaluate the
classification accuracy of the learned color term mod-
els. The data set consists of segmented images of 4 ob-
ject classes (cars, glass & pottery, shoes, and dresses)
with 10 evaluation images for each of the 11 basic color
terms (see Fig. 2). The eBay data set has been applied
by — most importantly — Weijer et al. [1, 15, 16] and
Schauerte et al. [13] for evaluation.

To measure the quality of our trained color term
model, we analyze the accuracy with which we assign
the correct color label to the objects in the eBay data set
(see Fig. 2). To serve as a reference, we compare our re-
sults against the two state-of-the-art models: The model
that was trained by Schauerte ef al. using x> ranking
[13] and the model that was trained using PLSA-bg only
by Weijer et al. [16]. The model by Weijer et al. uses the
L*a*b* color space, divided into 10x20x 20 histogram
bins, whereas the model by Schauerte er al. uses the
pHSL color space, divided into 32x8x 8 bins. For both
models, we assign the color term with the maximum
likelihood for classification. Serving as a natural base-
line, Schauerte et al. have shown that humans achieve
an average accuracy of 90.64% on the eBay data set,
which is caused by the fact that colors terms have no
sharp boundaries and thus there may be more than one
appropriate term in certain situations. For example, in
many situations a natural confusion exists between “or-
ange” and “red”, but there typically is no confusion be-
tween “red” and “green” (color opponents).

We trained our model using SLDA with 550 latent
topics and 11 classes, i.e. the 11 basic English color
terms, on the Google-512 data set. We use the Lab
color space with 32x32x32 histogram bins. As train-
ing samples for the SLDA, we kept the 50 % of the im-
ages that lie within the 5 and 55 percentile of the ranked
Kullback-Leibler divergences from the initial estimate



Method ‘ Cars Pott. Shoes Dress‘ TotalHDist

our approach |73.63 80.90 91.82 90.00/84.09(/0.50
x% rank [13] [73.63 79.01 92.73 88.18(83.41([0.57
PLSA-bg [16]]71.82 83.64 92.73 86.36|83.64/0.73
Human [13] [92.73 87.82 90.18 91.99|90.64|/0.00

Table 1. Evaluation results (in %).

of each term. The choice of 550 latent topics is a trade-
off (consider that 550/323 =0.0167), because a higher
number of latent topics would provide more latent fea-
tures for classification while on the other hand it in-
creases the risk of overfitting.

Our classification results on the eBay data set are
shown in Tab. 1. On the first sight, the total perfor-
mance of the color models is not drastically different,
so let us use the next two paragraphs to explicate why
our approach is an improvement. First of all, our model
has the best performance for the object classes dresses
and cars. The overall low performance for the classes
pottery and cars can be explained with difficult object
surfaces that, for example, often exhibit a considerable
amount of reflection. Unfortunately, the performance
of our model on the pottery class is substantially lower
than the performance of Weijer’s model. However, we
have to consider that the pottery class is particularly
hard, because it also has the highest confusion among
human raters. It is important to consider the human per-
formance on the class shoes, because here our model
has the worst accuracy, but — in consequence — it is
closer to the human accuracy.

As has been done by Schauerte et al. [13], we assess
the naturalness of our model by calculating the simi-
larity between the labels assigned by humans and the
trained models. As evaluation measure, we use the dis-
tance between the confusion matrices of the human ob-
servers and the trained model, see Tab. 1 (rightmost col-
umn). With a distance of 0.73 the model by Weijer et
al. [15,16] has the worst similarity, which indicates that
it has a tendency to make “unnatural” naming mistakes.
The model trained with x> ranking performs substan-
tially better with a distance of 0.57 (see [13]). However,
our SLDA model has an even lower distance of 0.50, a
further improvement of ~ 14 % towards assigning natu-
ral, human-like color names to real-world image data.

5 Conclusion

We described how we learn color models from im-
age data that was collected using Google’s search en-
gine. We use Weijer’s heuristic and Cheng’s region con-
trast saliency to highlight the image region that most
likely contains the object of interest. Then we use the
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Kullback-Leibler divergence from each image to an ini-
tial model to detect and remove images whose color
distribution is likely to be dominated by a color differ-
ent from the image’s label. Finally, we use the super-
vised latent Dirichlet allocation to train our color name
model. This way, we achieve state-of-the-art perfor-
mance on the eBay data set and, most importantly, are
able to improve the similarity between labels assigned
by our model and humans by 14 %, reducing the number
of “unnatural” naming mistakes.
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