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Abstract

In this paper, we develop a feature-aware 4D spa-
tiotemporal image registration method. Our model is
based on a 4D (3D+time) free-form B-spline deforma-
tion model which has both spatial and temporal smooth-
ness. We first introduce an automatic 3D feature extrac-
tion and matching method based on an improved 3D
SIFT descriptor, which is scale- and rotation- invariant.
Then we use the results of feature correspondence to
guide an intensity-based deformable image registration.
Experimental results show that our method can lead to
smooth temporal registration with good matching ac-
curacy; therefore this registration model is potentially
suitable for dynamic tumor tracking.

1. Introduction

Advancing modern 4-D (3D spatial + 1D temporal)
CT techniques provide abundant spatial and temporal
data of the patient for clinical monitoring and diagno-
sis. Temporally parameterizing these scan data can fa-
cilitate many clinical analysis and planning tasks. For
example, in lung cancer radiation radiotherapy, 4D-CT
images can be used to model the motions and defor-
mations of the tumor and surrounding organs, to guide
treatment planning [3]. Image registration plays an im-
portant role in the current motion estimation methods
by establishing temporal correspondences [5, 1].

Compared with the conventional image registration
techniques, 4D spatiotemporal registration can avoid
the bias caused by a predetermined reference frame, and
can enforce both spatial and temporal smoothness of
the transformations, which indicates physically natural
deformations [6].

However, most of the current spatiotemporal dy-
namic images are fully guided by the image’s inten-
sity [5, 1, 9]. The aligning computation therefore re-
duces to minimizing a non-linear problem having many
local minima, which usually has high computational
cost and, more importantly, requires a good initial guess
to reach a desirable matching. Feature constraints can
effectively guide the optimization from getting trapped
on locally. For example, in many video tracking tasks,
the SIFT descriptor has demonstrated great efficacy and
been widely used due to its discriminative feature [4].
Directly generalized SIFT descriptor in 3D [2], how-
ever, could be sensitive to scalings and rotations of the
deforming objects in the volume images. In this pa-
per, we first introduce a modified 3D-SIFT descriptor
that can handle these more reliably, then we develop a
feature-constrained 4D dynamic registration algorithm
to spatially and temporally match deforming volume
images. This paper has two main contributions.

1. We propose an improved 3D feature extraction and
matching algorithm based on N-SIFT method. The
new method can detect more corresponding fea-
tures and have less matching error.

2. We formulate a 4D spatiotemporal feature align-
ment metric that minimizes the position invariance
over time to guide the image registration which
leads to more accurate results.

2. Method
2.1. Feature Point Extraction and Matching

To handle the registration of volumetric images, Sco-
vanner et al. [7] proposed a 3D SIFT descriptor and ap-
plied it in action recognition. Cheung and Hamarneh
extended SIFT to N-Dimension SIFT [2] (N-SIFT) and

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-1-6 ©2012 IAPR 2639



showed its effectiveness on volumetric images. How-
ever, neither descriptor is scale or rotation invariant. To
adequately describe images of deforming organs, we
shall improve the existing 3D SIFT descriptor.

The procedure of N-SIFT includes scale space ex-
trema detection, orientation assignment, descriptor con-
struction and matching [2]. For an input volume image,
we first extend method [4] to locate its keypoints with
sub-pixel accuracy.

One limitation of N-SIFT is its sensitivity against lo-
cal rotation. To more robustly handle this, we can assign
multiple directions (rather than just one dominant direc-
tion used in [7]) to a keypoint region. We calculate an
orientation histogram of a region around the keypoint
with width 6 ∗ σ where σ is the scale of the keypoint.
This orientation histogram has 36 × 36 bins covering
360◦ of the orientations. The highest peak of the his-
togram corresponds to the dominant direction. Here,
we consider local peaks within 80% of the highest peak
also to be the directions of the keypoint region. Region
that is chosen in the construction of the descriptors can
be reoriented according to its directions by multiplying
its rotation matrixes [7]. Descriptors are constructed on
the reoriented regions. Multiple directions make our 3D
SIFT more robust to the image rotation.

N-SIFT is also not scale-invariant, since it computes
the descriptor on the original image and the size of the
region around the keypoint is fixed. We use a scale se-
lection method to deal with scale change. We construct
the descriptors on the corresponding Gaussian smooth
image. The region around the keypoint is defined and
divided into 4×4×4 patches. We set its patch size to
be 3 ∗ σ which is related to its scale. In this way, our
descriptor is robust against scaling.

For the matching process, since N-SIFT matches de-
scriptors directly, a point may be matched to more than
one point. Some of the matchings are wrong. Hence, we
further conduct a RANSAC algorithm to deal with this
one-to-many correspondence issue and remove the out-
liers. In our work, before doing 4D registration we first
perform feature extraction and matching between every
two consecutive volume images, then choose those con-
sistent correspondences that appear in all time frames.

A simple example is given in Fig. 1 to demonstrate
the rotation invariance of the new descriptor. A lung
CT volume image (dimension 465×300×20) is used as
the reference; its subsequent image has rotated by 20◦

along Z axis (this happens when the patient rotates). We
compare the correspondences found using N-SIFT and
our improved 3DSIFT. N-SIFT method extracts fewer
matching pairs and has some error matchings while our
algorithm works correctly and find more matched fea-
tures. Note that this matching is done on volume images

although we only illustrate a 2D cross section.

Figure 1. Feature Extraction and Matching.

2.2. 4D Free-form B-spline Deformation

We present a 4D deformation model, based on a 4D
free-form B-spline incorporating both the spatial and
time dimensions [5]. Denote the 4D input image as
I(y), where y = (xT , t)T ∈ R3 × R is a coordinate
in I which consists of a spatial location x ∈ R3 and
temporal location t ∈ R. The B-spline based coordi-
nate transformation Tµ is defined as follows:

Tµ(y) = y +
∑

yk∈Ny

pkβ
r(y − yk), (1)

where yk is a knot on the parametric domain; βr(·)
is the r-th order multidimensional B-spline polynomial;
pk is the B-spline control points to be solved, and Ny

denotes the neighboring region providing local support
to the B-spline at y. The knots yk are defined on a 4D
regular grid, uniformly overlaid on the image. The pa-
rameter vector µ consists of the collection of the first
3 elements of each pk. The last element of each pk is
fixed to zero, which ensures that only deformation in
the spatial domain are allowed. In the following Tµ(y)
is interchanged with Tµ(x, t) for convenience.

In order to align all the images, we assume that after
correct registration the intensity values at corresponding
spatial locations over time are equal. Hence we should
minimize the image intensity changes over time. An
implicit reference frame is used to eliminate the need to
choose a reference time point image. The dissimilarity
metric, or cost function, is therefore defined as:

C(µ) =
1

|S||Γ|
∑
x∈S

∑
t∈Γ

(I(Tµ(x, t))− Īµ(x))
2, (2)

where Īµ(x) is the average intensity value over time af-
ter applying transformation Tµ,

Īµ(x) =
1

|Γ|
∑
t∈Γ

I(Tµ(x, t)), (3)

and S and Γ are the set of spatial and temporal voxel
coordinates respectively.
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As none of the images are chosen as an anatomical
reference, it is necessary to add a geometric constraint
to define the reference coordinate frame. Similar to [1],
we define the reference frame by constraining the aver-
age deformation to be the identity transformation

1

|Γ|
∑
t∈Γ

[Tµ(x, t)]x = x, (4)

where [·]x means get the position component x from
current 4D point (x, t). Then the optimal deformation
field can be computed by the adaptive stochastic gradi-
ent descent optimizer (ASGD).

µ̂ = arg minµC(µ), subject to (4) (5)

After this registration all time point images are aligned
in the implicit reference frame.

2.3. Feature-aligned Registration
In order to compute the transformation Tij

µ which
maps coordinates from time point i to time point j, we
need to compute the inverse mapping T−1

µ which maps
coordinates from the input image coordinate frame to
the reference frame. Since the mapping Tµ may not
be bijective, its inverse mapping T−1

µ may not actually
exist. Here we define an approximate inverse mapping
using a B-spline Tv by minimizing

FPos(v) =
1

|Y |
∑
y∈Y

||Tv(Tµ̂(y))− y||2 (6)

where Y is the set of knots. In order to prevent foldings
in the transformations we choose smaller grid spacing
to yield more accurate results.

After our feature extraction and matching, we get
the coherent corresponding features of all spatial im-
ages along temporal dimension. We enforce the feature
matching constraints in the inverse registration.

Suppose we have N coherent features. We denote
the ith feature point on time j (on jth image) as pij ,
where i = 1, . . . , N, j = 1, . . . ,Γ. Intuitively, af-
ter correct registration the corresponding feature should
be at the same point in the reference frame. That
is, for each i, we shall also minimize the variance of
Tv(pij , j) in the reference image, where (pij , j)

T de-
notes a 4D vector in the spatial-temporal space.

The cost function for feature alignment is

FFea(v) =
1

N |Γ|

N∑
i=1

∑
t∈Γ

||[Tv(pit, t)]x− [T̄v(pi.)]x|| (7)

where
T̄v(pi.) =

1

|Γ|
∑
t∈Γ

[Tv(pi,t, t)]x (8)

The final objective function for estimating the opti-
mal deformation field is formulated as:

Fv = FPos + λFFea (9)

Table 1. The registration error in mm, on 40 land-
marks among 0th,5th,9th time frames of the POPI-
data. Ei,j is the matching error from ith to jth frame,
Ē is the mean error for the whole sequence.

E0,5 E0,9 E5,0 E5,9 E9,0 E9,5 Ē

[5] 2.94 0.98 2.88 2.86 0.99 2.91 2.26
Our’s 2.87 0.85 2.77 2.74 0.87 2.84 2.16

where λ is the weighting factor controlling the strength
of the feature constraint term. We determine those
transform parameters that minimize the total metric as

v̂ = arg minvF (v). (10)

We also solve Eq-(10) using ASGD, then we can get
the transformation from time point i to time point j:

T ij
µ̂,v̂(x) = [Tµ([Tv(x, ti)]x, tj)]x. (11)

3. Implementations and Experiments

We implement our model via a multi-resolution strat-
egy and use linear interpolation in the spatial domain
for the derivation of intensity values for any point not
on a grid. Our algorithm was implemented in C++ us-
ing an Intel Core E7300 @2.66 GHz, 4GB RAM. The
registration on the POPI-model and our tumor data take
approximately 45 mins, of which 22 mins were spent to
compute the 4D forward registration and 23 mins were
spent to compute the 4D inverse registration.

Experiments on POPI Dataset. Our first experi-
ment is conducted on the POPI dataset [8]. This dataset
contains one 4D CT series including ten 3D volumes
representing ten different phases of one breathing cy-
cle. In the 3D volume at time frame t, the coher-
ent landmarks (a set of 3D points, denote as Pt =
{pt,1, pt,2, ..., pt,|Pt|}) are available and can be used to
evaluate the registration. We use the time frames 0,
5, and 9 with 571 feature correspondences to do group
registration. The registration results were evaluated by
the mean target registration error (MTRE) between the
set of landmark points {P0, P5, P9}. Denote MTRE as
Er,t = 1

|Pt|
∑

pt,i∈Pt
||T r,t(pr,i) − pt,i||, where pt,i is

a landmark i in time t. In our experiments, we set the
control weight in Eq. (9) as λ = 0.1. Table 1 shows the
comparison between our method and the algorithm of
[5]: our method outperforms [5] by introducing smaller
MTRE errors.

Lung Tumor Registration. Our second experiment
is to apply our registration model in dynamic tumor
tracking (Fig. 2). We detect 202 feature correspon-
dences among the image sequence. Before registration,
we segment the tumor in the first frame by using 3D
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graph-cut segmentation [3]. Then with our registra-
tion results, we track this tumor in the following sec-
ond/third time sequence (shows in the second/third col-
umn of fig. 2). The bottom of this figure depicts the reg-
istration of this tumor among different time sequences.

Furthermore, we compute an unbiased difference im-
age between the deformed image and the target image
to evaluate the registration accuracy. Assume the 3D
source image is Ii(X) in i-th frame, the 3D target im-
age is Ij(X) in j-th frame. The deformed image is
I(Tx) where Tx = T ij(x) and x from the source im-
age. In order to avoid the influence of the gray value
of original pixel, we normalize the difference frame: if
I(Tx) + Ij(Tx) ̸= 0 then Id(Tx) = |I(Tx)−Ij(Tx)|

I(Tx)+Ij(Tx) ;
otherwise, Id(Tx) = 0. It is easy to check that this met-
ric is symmetric between the deformed image and target
image. Smaller Id indicates more accurate registration.

Fig 3 (a) shows the projection of the difference im-
age between the second and the third frame. (b) shows
the histogram of the computed difference value. We
construct this histogram based on the normalized differ-
ence frame between the deformed second frame and the
third frame. We count the occurrence of each difference
value and divide it by the total number of the pixels to
get its probability. We can see in larger than 90% pix-
els, the difference value is less than 0.1, and the mean
difference value is 0.016. These indicates that our reg-
istration introduces very small error between deformed
image and the target image. Thus our registration can
be used for tumor motion tracking (see Fig.2).

Also, this visualization (Fig 3 (a)) can also help us
to identify the region with large registration errors for
subsequent matching refinement. We can see around
the boundary part and the central of left lung part have
larger difference value. In the future, we will develop
hierarchically spline scheme to support adaptive refine-
ment, so that we can insert more knots in these regions
to reduce the registration error.

Figure 2. Tumor tracking with our registration.

4. Conclusion
We propose an automatic feature-guided 4D im-

age registration framework. We develop an improved

Figure 3. The color-encoded difference image and
its histogram distribution. The volumetric difference
image is projected onto 2D, (a) shows the accumulated
intensity. This intensity distribution is illustrated in (b);
90% pixels has difference value < 0.1. Note that y-
axis is logarithmic-scaled.

3D-SIFT descriptor for reliable feature extraction and
matching. Compared with existing 4D registration
model we achieve better landmark predication accuracy.
Our model also has good ability to do tumor motion es-
timation which can greatly facilitate lung tumor radio-
therapy planning and management.
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