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Abstract

Sharing of hyper-parameters is often useful for
multi-task problems as a means of encoding some no-
tion of task similarity. Here we present a multi-task
approach for signal recovery by sharing higher-level
hyper-parameters which do not relate directly to the ac-
tual content of the signals of interest but only to their
statistical characteristics. Our approach leads to a very
simple model and algorithm that can be used to simul-
taneously recover multiple natural images with unre-
lated content. We investigate the advantages of this
approach in relation to state of the art multi-task com-
pressed sensing and we discuss our findings.

1. Introduction

Multi-task signal recovery aims to perform several
single-frame recovery tasks simultaneously by exploit-
ing some form of similarity between the tasks. A re-
cent paper tackles this complex problem by an approach
termed as Multi-Task Bayesian Compressed Sensing
(MT-BCS) [3]. In this approach the similarity of tasks
is defined as a percentage of overlapping content — i.e.
the positions of edges or smooth regions should have a
non-negligible overlap. By its construction, MT-BCS
is able to exploit this definition of similarity to recover
multiple signals simultaneously in a single run more
efficiently than multiple runs of a single-task recovery
method would.

Here we propose and investigate a complementary
approach in which we seek to exploit a much weaker
notion of similarity that is unrelated to the actual con-
tent but only depends on the statistical characteristics of
the signals to be recovered. We achieve this by build-
ing the model of MT-BCS to a further level and sharing
higher level hyper-parameters in the resulting model.
This turns out to yield a very simple model in terms of
its model and experimental design. It has fewer hyper-
parameters in which the edge-content related parame-
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ters are integrated out and the remaining shared higher-
level hyper-parameters can be estimated automatically
in a similar manner to what we have tackled previously
[1, 2]. The next section describes our approach and its
relation to MT-BCS, Section 3 presents comparative ex-
periments and discussion, and the last section concludes
the paper.

2. Multi-task Recovery Framework

Consider K different (though related) recovery
tasks. We will denote by z(*) the k-th high resolution
signal (scene) of length IV that we aim to recover. The
observed low resolution (or compressed) signal y (*) has
length M < N and is described by the following for-
ward model:

y B = WHg® 4y =1 K (1)

where 1) is a mean-zero i.i.d. additive Gaussian noise
with variance o21.
From eq. (1), we can write the likelihood as:

piy®|z® WH 52) = N(WFEZH) 52)  (2)

and in order to infer z(*) | k = 1, ..., K, we need to spec-
ify a model on these, which we do in the next subsec-
tion.

2.1 Prior for multiple signals

The gist of multi-task recovery is to exploit similar-
ities between the multiple tasks in order to gain effi-
ciency against performing the tasks individually. There
are many ways to define similarity though, and this is
a crucial aspect of designing a suitable prior. Before
proceeding we define the notation 60" = Dz® where
D could be e.g. a wavelet transform as in [3], or an-
other linear transform that makes the representation of
z(F) sparse. In particular, we used a simple linear trans-
form from pixel brightness values into neighbourhood-
features by taking the difference between pixel bright-
ness and the average of its four cardinal neighbours (see



e.g. [2]). With this latter choice of course the compo-
nents of %) are not completely statistically indepen-
dent, however a pseudo-likelihood approximation (as in
[2]) makes it possible to treat them as if they were. The
transform D is invertible, so estimating 0™ is equiva-
lent to estimating z(*), which allows us to simplify the
exposition and make the link between the mult-task im-
age prior of [3] and ours in the sequel.

2.1.1 Hyper-parameter sharing in [3]

Previous work in [3] posited the following Gaussian
scale-mixture as a multi-task image prior:

(0" |a) = HN (k) \0 ot

(ailc, d)

3

= Ga(aile, d) “4)
where « are hyper-parameters shared across the tasks.

The authors then propose to let ¢ = d — 0, which
corresponds to a fat-tail uninformative improper prior.
The estimates of « are then obtained by the so-called
Type II Maximum Likelihood approach:

K
o = arg max Z log

[ 8166 )
¥ k=1

)
Now, since the components of « are inverse vari-
ances of the (zero-mean) pixel neighbourhood features,
a large entry in this hyper-parameter vector means a
nearly zero variance i.e. a locally smooth region,
whereas a small entry signifies a large departure from
smoothness i.e. a spike or an edge. Sharing of this pa-
rameter vector across all the recovery tasks therefore
defines a very strong and very specific kind of simi-
larity: the positions of edges and smooth regions must
have a considerable overlap. Hence, whenever we know
a-priori that the high resolution images that we try to re-
cover are similar to each other in this sense then we can
expect that the method in [3] is best placed to exploit it.
However, when the notion of similarity defined above
is not satisfied, e.g. the images have independent con-
tent, then we conjecture that a weaker, higher level sim-
ilarity of the natural image statistics could be exploited
instead. This is what we investigate next.

2.1.2 Higher-level hyper-parameter sharing

We make two important changes to the model in [3].
First, we will not share the inverse-variances of 8 be-
cause we want to relax the definition that the extent
of overlap in the positions of edges and smooth re-
gions is what defines similarity. Secondly, we build
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the model further: Instead of letting hyper-parameters
of the Gamma hyper-prior to zero, we will share these
among the tasks and estimate them from all the data of
the multiple recovery tasks. In addition, we make the
model more flexible by introducing a width parameter
A. Summing up, our model is the following:

(k)] (R

H/\/ ®10, A/
m@%m= Ga(aM|v/2,1/2)

To estimate the remaining high-level hyper-
parameters v and A we will use a type-II Maximum
Likelihood (ML) on the prior term alone', and this
will yield a simple and computationally convenient
algorithm. That is, we take:

(6)

(7

Np(ap)
®

The reason is, the integral in eq.(8) is analytically
tractable and yields a product of Pearson type VII den-
sities:

K
{v,\} = argn;,xZIOg/doz(k)p(a(k)|o[(lf)

k=1

/da(k)p(ﬁ(k)|a(k),)\)p(a(k)h/) =..

N
[] 0507 + 7% =0000)
=1
14v v/2
where Z (v, \) = %

2.2 The joint model and parameter estimation

Putting everything together, our joint model for K
recovery tasks are defined by:

Wy g

p(y ) A L A W)

K

= r

(k)|9(k), W(k),UQ)p(B(k)M, V) (10)

The negative log of this joint probability will be our
objective functlon that we minimise to get the MAP es-
timates of all 8% k = 1,..., K and ML estimates of

! Although a direct extension of the estimation approach in the pre-
vious section i.e. an evidence maximisation in the sense of a type-III
ML would be interesting to investigate as well, our approach fits with
the MAP estimation that we do for finding the most probable images
z(*®) | and we found it to work well in practice as we shall see in the
experimental section.




A, v and 0. Note that we have now integrated out the
full set of hyper-parameters « (that appeared in [3]) and
these do not need to be estimated at all in our approach.
As we already mentioned, this, and our sharing of only
v and )\ means a weaker and higher level notion of task
similarity than that of [3]) — essentially we only as-
sume similarity of the statistics of 6™ and allow the
content of the target signals to be different. We carried
out the minimisation of the above objective using con-
jugate gradients in much the same way as described in
our previous works [2].

3. Experiments

We investigate three research questions as follows:
(i) To what extent our definition of relatedness can be
exploited for multi-task recovery? (ii) How does the ex-
isting work in M-BCS [3] perform on data that only has
our weaker notion of relatedness? (iii) What do we lose
by exploiting only our weaker notion of similarity when
the data really has the stronger one exactly as defined in
MT-BCS[3]?

3.1 Results and Discussion

(1) To gain insight into our first question, we conduct
experiments to compare the performance of multiple
runs of a single-task recovery algorithm with the perfor-
mance of one run of our multi-task recovery method. In
both methods we use the Pearson type VII image model,
however the single-task approach estimates the hyper-
parameters v, \ and the noise variance o2 separately for
each task whereas the multi-task approach uses all the
data to estimate these.

From our experiments we found that multiple runs
of single-task recovery already performs very well in
terms of means square error (MSE). Nevertheless, the
multi-task approach works in a single run and from our
experiments it performs no worse for a class of sig-
nals (e.g. natural images have similar statistics even
when they have different content), and it may even
yield a slight improvement in the quality of recov-
ery since it has more data to estimate these hyper-
parameters. Figure 1, shows the MSE results of three
single-task recoveries versus one multi-task recovery
of the same target images — natural images of size
80 x 80 pixels each, which have no overlapping con-
tent other than their naturally similar image statistics:
‘woman face’, ‘cameraman’, and ‘castle’. We
varied the number of measurements (extent of compres-
sion), and we worked with w k) randomly generated
matrices with i.i.d. standard Gaussian entries. We see
the multi-task approach is able to get good recovery in
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Figure 1: Comparing three separate runs of single-task (ST)-
Pearson based recovery against one run of multi-task (MT)
Pearson based recovery. The task is to recover three different
high resolution images from only one randomly compressed
and noisy frame of each. The noise standard deviation was
oc=8x10"".

a single run and it needs slightly less measurements for
good recovery in this example.

(i1) Next, we compare our multi-task approach pre-
sented in the earlier section against M-BCS [3] on data
that has no overlapping content but exhibits only our
weaker notion of similarity. To perform a systematic
study, we first use synthetic 1D spikes signals modified
from [3]. We try to recover two signals simultaneously,
each having length 512, of which 20 entries are spikes
(+1 or -1) and the rest of entries are zero. However,
contrary to [3] the positions of these spikes are gener-
ated randomly for both signals, with no planned over-
lap in their positions. Figure 2 shows an example of the
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Figure 2: First 4 plots: Example input measurements and
high resolution signals to be recovered. Last plot: Compari-
son of our MT-Pearson approach against MT-BCS on recov-
ering two spike signals simultaneously.

data, as well as the results of an extensive comparison
when the number of measurements available is varied.
Clearly, our MT-Pearson approach that only shares high
level hyper-parameters performs significantly better in



this problem setting. It achieves lower MSE and needs
less measurement to recover the high resolution signals.
MT-BCS looses out because it expects a content-wise
overlap, which is not present in the true signals in this
setup.
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Figure 3: Three sets of experiments simultaneously recover-
ing pairs of natural scenes of size 50 x 50.

To further validate this conclusion, Figure 3 shows
multi-task comparison results on image recovery ex-
periments where the task is to recover pairs of natural
images simultaneously. Again, we see that our MT-
Pearson approach outperforms MT-BCS, and this is be-
cause these images have similar statistics but no overlap
in their content.

(iii) Finally, we test our approach in scenarios that
do have content overlap of the kind that is hard-wired
into MT-BCS. We use exactly the same 1D spike sig-
nals and use exactly the same experimental setup as [3],
and also employ their experimental protocol: That is,
the task is to recover two spike signals simultaneously
when they have 25%, 50% or 75% of their spikes in
the same positions, and the noise level is set to 0.005.
By the design of MT-BCS, the larger the percentage of
overlap the better MT-BCS will perform, whereas our
MT-Pearson does not depend on any content-wise over-
lap but only on higher level statistical similarity.

The upper plot of Figure 4 shows the results of MT-
BCS superimposed with our MT-Pearson. Interestingly,
we see that our MT-Pearson is only outperformed by
MT-BCS in 75% spike-overlap conditions. It comes out
statistically equal to MT-BCS in the 50% overlap setting
and it is significantly superior to MT-BCS in settings
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Figure 4: Upper plot: Reconstruction errors of MT-Pearson
and MT-BCS [3], as a function of the number of compressive
measurements. Lower plots: The variance of reconstruction
errors for 25%, 50% and 75% similarity over 100 independent
runs.

that have less content-wise overlap. The lower plots of
Figure 4 detail all pairwise comparisons separately with
error bars shown for completeness.

4. Conclusions

We presented a new approach to multi-task signal re-
covery where the target signals need not have any over-
lap in their content but only share their higher level sta-
tistical characteristics. This can be used for simulta-
neous recovery of sets of natural images in a single run.
We compared our approach with multi-task BCS, which
is the state of the art for multi-task signal recovery and
we highlighted the settings in which our approach is ad-
vantageous.
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