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Abstract

Depth maps captured by Kinect-like cameras are
lack of depth data in some areas and suffer from heavy
noise. These defects have negative impacts on practi-
cal applications. In order to enhance the depth map-
s, this paper proposes a new inpainting algorithm that
extends the original fast marching method (FMM) to
reconstruct unknown regions. The extended FMM in-
corporates an aligned color image as the guidance for
inpainting. An edge-preserving guided filter is further
applied for noise reduction. To validate our algorithm
and compare it with other existing methods, we perfor-
m experiments on both the Kinect data and the Mid-
dlebury dataset which, respectively, provide qualita-
tive and quantitative results. The results show that our
method is efficient and superior to others.

1. Introduction

Depth information is quite useful for many comput-
er vision applications. Among many depth sensors, the
Kinect [7] gains a great success because of its low price
and relatively high resolution. The Kinect sensor con-
sists of an infrared light projector, a depth image CMOS
sensor and a color image CMOS sensor. It captures real-
time depth maps using a light coding technique. How-
ever, the device is unable to correctly estimate depth da-
ta in some cases due to the limit of working distance, oc-
clusions, reflective surfaces, or relative surface angles.
This leads to missing regions and unstable boundaries
in depth maps. Fig. 1(a) and Fig. 1(b) show a typical
pair of images captured by a Kinect, including a col-
or image and its aligned depth map. The latter contains
invalid depth regions near occluded boundaries and out-
side the door. Moreover, the alignment also causes large
invalid areas along the image borders.

Although a lot of applications based on the Kinect
have been released, research about the depth map refine-

978-4-9906441-1-6 ©2012 IAPR

2055

£

(a) Color image (b) Depth map

(d) Filtering result

(c) Inpainting result

Figure 1: Our result of real-world Kinect data

ment is deficient. Filling holes in depth maps is similar
to the inpainting technique in optical images to a certain
degree. Criminisi et al. [2] propose an image inpainting
method using the exemplar-based texture synthesis and
structure propagation. Telea [10] uses the fast marching
method (FMM) to reconstruct damaged portions of an
image. When applying the methods that are originally
designed for optical images to depth maps, results are
limited to only using the depth information to fill holes
in a visually plausible way.

With the purpose of acquiring fine depth bound-
aries of objects, researchers also propose some meth-
ods taking advantage of color images. Some related
work [1, 6] uses a joint bilateral filter [8] to enhance
depth maps. Dolson et al. [3] present an accelerat-
ed high-dimensional bilateral filtering approach for up-
sampling sparse laser range data. In addition, the work
of He et al. [4] demonstrates that a guided filter operates
rapidly and avoids gradient reversal artifacts which may
be caused by the bilateral filter. However, the depth en-
hancements only relying on filtering techniques do not
work well when unknown regions are large.



In order to take advantage of available color im-
ages and meanwhile deal with big unknown region-
s better, in this paper we propose a novel inpaint-
ing method. It extends the efficient and effective fast
marching method [10] so that a color image can be in-
corporated as the guidance while filling holes in a depth
map. We hence refer to it as a guided FMM. Once the
depth map is inpainted by our guided FMM, we further
apply the guided filter [4] to refine it. At the end, we
perform experiments on both the Kinect data and the
Middlebury dataset [9] to obtain qualitative and quanti-
tative evaluations and comparisons.

2. Guided Inpainting

In this section, we demonstrate our guided fast
marching method for depth inpainting. We first in-
troduce a color-based inpainting model to estimate the
depth of a pixel on the boundary of unknown regions.
Then we present how to determine the order of depth
propagation by the guided FMM. Since our algorithm
is inspired by Telea’s work that is based on the FMM ,
several comparisons will be presented.

2.1. Inpainting Model

Like other inpainting literatures, we use {2 to repre-
sent a region to be filled where a Kinect cannot estimate
depth values. What’s more, the boundary of €2 is denot-
ed by 0f2. Fig. 2 illustrates the principle of inpainting
one pixel on 0€). Considering a small area B(p) whose
depth values are known around pixel p, the depth value
D(p) can be estimated by the weighted average of first
order approximations:
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Here VD(q) indicates the depth gradient at pixel g,
w(p, q) is the weighting function. We design w(p, q)
as a product of the following four terms:
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where I indicates the aligned color image and 7' is a
distance map which will be detailed later. wgs:(p, q)
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Figure 2: Inpainting model

decides the contribution of pixels according to geo-
metric distances to p. wga;-(p,q) ensures pixels clos-
er to the normal direction achieve higher contributions.
wiew (P, q) 18 the level set term to make pixels closer to
the contour through p have higher weight. wcq(p, q)
makes pixels having similar color to I(p) contribute
more than others.

In contrast to Telea’s method, we introduce the color
term weo; (P, g) so that the weighting function w(p, q) is
able to incorporate color information for depth inpaint-
ing. This term is designed based on an assumption that
neighboring pixels similar in color are likely to have
similar depth values. With this term, it is possible for us
to get fine depth edges in unknown regions.

2.2. Depth Propagation

As emphasized by Criminisi et al. [2], when propa-
gating depth from 052 to €2, the order by which the in-
painting procedure takes highly influences the resulting
quality. Therefore, in this work we modify the propaga-
tion order in Telea’s FMM for making better use of the
guided color image.

Let us first introduce Telea’s algorithm based on the
FMM. It first sets 7' = O for the pixels in known region-
s, then progressively generates a distance map 7' while
marching into  satisfying ||VT|| = 1. Telea’s algo-
rithm decides the propagation order by choosing a pixel
with the minimum 7 in each iteration. Nevertheless, s-
ince the order is only determined by the distance to the
boundary, this algorithm may break edges as Fig. 3(e).

In order to use an aligned color image as the guid-
ance, a color-similarity term around the pixel is calcu-
lated by
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where N (p) is the neighboring window of p, including
the pixels with both known and unknown depth values,
and [N (p)| is the number of pixels. The color-similarity
term assigns a high priority to a pixel having similar
color around it. In other words, this term makes the



(a) Depth image

(b) FMM order

(c) GFMM order

(d) Color image (e) FMM result (f) GFMM result

Figure 3: Inpainting results of synthetic images

pixels near edges estimated later, thus trying to achieve
fine edges. With this modification term, we decide the
proceeding order by

E=(01-MNT+X1-0), 3)
where the scalar A is a weighting factor between the
distance term and the color-similarity term. Our depth
propagation algorithm drives the inpainting order by
choosing a pixel with the minimum E in each iteration.

Fig. 3 illustrates the power of our proposed method
on a synthetic color image and the corresponding depth
map. The two black rectangles in the depth map indi-
cate regions to be inpainted. Considering darker pixels
get inpainted earlier, (b) and (c) demonstrate that the
guided FMM (GFMM) estimates the depth near edges
at last while the original FMM determines the inpaint-
ing order by the distance to the boundary. (e) and (f)
show that our method preserves the edges better than
Telea’s method.

3. Guided Filtering

The guided inpainting process makes every pixel in
unknown regions get a proper depth value, however, the
inpainted depth map still suffers from noise and un-
stable boundaries. Izadi et al. [5] use the bilateral fil-
ter (BF) to refine depth maps. The work by Wasza et
al. [11] applies the guided filter (GF) [4] to accomplish
real-time denoising on the GPU. Considering the effi-
ciency of the guided filter, we choose it to refine depth
maps. Here we take the aligned color image as the guid-
ance to filter the inpainted depth map.

The guided filter is proposed as a time-efficient edge-
preserving smoothing operator. It is based on the as-
sumption that the output image has a local linear model
to the guidance image in a small window, which means

D(p) = axI(p) + by, )
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where I(p) is the color data regarded as the guidance
and ﬁ(p) is the output depth value. Besides, a, and by,
are coefficients of the linear model. In a certain window,
ay, and by, are solved by

é?izfi) (axI(p) + bx — D(p))* +cax®,  (5)

P

where ¢ adjusts the filtering effects and D(p) indicates
the input depth data. Since one pixel is covered in dif-
ferent windows, the guided filter computes the average
of aiI(p) + by, for all the windows to achieve the output
depth map. Fig. 1(d) shows the guided filtering result
on the depth map after inpainting.

4. Experimental Results

In our experiments, we set weight A = 0.99 de-
scribed in Eq. 3. We validate our approach and com-
pare it with other methods using both real-world Kinect
data and the Middlebury dataset [9]. Fig. 4 presents the
former results. There are some missing regions caused
by particular surfaces such as human hair and chairs in
the depth map. Here we compare four methods includ-
ing FMM, FMM + GF, GFMM, and GFMM + GF. The
results based on the FMM are unsatisfactory because
of only using depth information. Our guided inpaint-
ing method fills holes while preserving the edges in un-
known regions. Furthermore, the results after guided
filtering show the improvement of edges and reduction
of noise. For the Kinect real data (320 x 240) about
17000 points to inpaint, our inpainting algorithm takes
less than 300ms on an Intel Core 2 CPU @ 2.33 GHz
and 2 GB memory PC.

Since the ground truth depth for real-world scenes
cannot be obtained easily, we test these approaches on
the Middlebury stereo dataset whose ground truth depth
is available, in order to acquire a quantitative compari-
son. To generate the artificial defective depth map, we
first add the gaussian noise (o = 5) to the ground truth
depth, then we draw some black areas which indicate
no depth value. Using Middlebury dataset, the depth
map results and the RMSE against the ground truth are
shown in Fig. 5 and Table 1, respectively. We can easi-
ly see that the quantitative performance of our approach
which combines the guided FMM inpainting and the
guided filter is the best. More experimental results are
available online.

5. Conclusions

In order to enhance defective depth maps captured
by Kinect-like cameras, we have proposed a novel in-



-

(a) Color

(b) Depth

(c) FMM

WA WA

(d) FMM + GF

(e) GFMM (f) GFMM + GF

Figure 4: Results of different methods on Kinect data

(a) Color (b) Depth (c) FMM

E 2
- i 3

(d) FMM + GF

(e) GFMM (f) GFMM + GF  (g) Ground Truth

Figure 5: Results of different methods on the Middlebury dataset

Table 1: Results of RMSE against the ground truth on
the Middlebury dataset.

Methods Plastic | Moebius
FMM 6.87 5.23
FMM + GF 4.33 2.72
GFMM 4.93 4.97
GFMM + GF 1.94 2.42

painting method based on the guided FMM to recon-
struct unknown regions. In addition, we incorporate the
guided filter to improve the depth quality. Experimental
results show that our method outperforms other existing
methods in terms of both visual quality and RMSE. We
believe that our method can provide better inputs to the
applications based on the Kinect.
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