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Abstract

Active learning traditionally assumes that the oracle

is capable of providing labeling information for each

query instance. In reality, the oracle might have no in-

formation for some queries and cannot provide accu-

rate label but only answers “I don’t know the label”.

We focus on this problem and provide a unified objective

function to ensure that each query instance submitted

to the oracle is the one mostly needed for labeling and

the oracle should also have sufficient knowledge to la-

bel. Experimental results on real-world and benchmark

data sets demonstrate the effectiveness of the proposed

design for supporting active learning using oracles with

blind knowledge.

1. Introduction

Obtaining labeling information for instances is nor-
mally a time consuming process with expensive costs.
Instead of labeling the entire training set or a randomly
selected instance subset, active learning [3] represents
a family of methods which select most informative in-
stances for the oracle to label. Most existing active
learning methods rely on a strong assumption that the
oracle is perfect and can provide correct labels for each
queried instances.

In reality, it is possible that the oracle may have in-
sufficient knowledge to label some instances [9]. For
example, Figure 1 demonstrates a possible situation on
which an oracle may not have sufficient knowledge for
labeling. For a queried instance x, the oracle can ei-
ther correctly label it (if the oracle has sufficient la-
beling knowledge) or answer “I don’t know the label”
for x (if x falls into the oracle’s blind knowledge).
The inherent challenges associated to the oracle with
blind knowledge is twofold: (1) how to characterize
the oracle’s blind knowledge; and (2) how to select
the instance for the oracle by considering both infor-
mation of instance and the oracle’s blind knowledge.

Recently, several works argue that it is too strong to as-
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Figure 1: Examples of image labeling with insufficient label-
ing knowledge.

sume that oracles may always behave perfectly . Some
works are to repeatedly acquire labels from multiple
sources/labelers [5] [10]. Some works try to learn the
quality of a labeler in tandem with learning values of
classifier parameters [4] [8] [11]. Those works’ as-
sumption is that there are lots of cheap labelers and
they can try to avoid uncertainty labels by asking la-
belers several times or choosing other labelers. In our
problem setting, we only consider one imperfect ora-
cle where answering each query is subject to a certain
amount of costs. In addition, although existing meth-
ods realize that oracles might be weak and noisy, they
have no mechanism to characterize the oracle’s knowl-
edge. As a result, they have no solution to avoid an
oracle’s weakness, and would still require all oracles to
label instances which may be out of the oracle’s domain
knowledge.

Motivated by the above observations, we propose,
in this paper, a mutual information theory based frame-
work to query the instance which has the maximum mu-
tual information according the knowledge of the oracle.
To characterize the oracle’s blind knowledge, we use
diverse-density framework to transform instances into a
new feature space, through which we can accurately as-
sess the likelihood of each unlabeled instance belonging
to the oracle’s blind knowledge. Experiments demon-
strate that, given a fixed query number, the proposed
method can label more instances and also result in more
accurate classification models than the baseline meth-
ods.

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-1-6 ©2012 IAPR 2238



2. Approach

In this section, we first formulate the problem
and define the objective function, and then propose a
method for knowledge characterization. The algorithm
framework is reported in Section 2.3 .

2.1. Information-theoretic Model

Consider a data set with n instances {x1, . . . , xn},
where the label for the ith instance is denoted by yi. In a
generic active learning setting, the oracle is able to pro-
vide label for every queried instance, so the objective of
the uncertainty sampling based active learning [3] is to
query the instance with the highest entropy (i.e. uncer-
tainty). So given the labeled data, we have

argmax
xi∈U

H(yi; �(L)) (1)

where U denotes the set of unlabeled instances and H
represents the entropy of instance xi with respect to the
class labels predicted from a classifier �(.) trained from
labeled set L.

In real-world scenarios, such as image or scientific
text annotation, the oracle may have limited knowledge
or blind knowledge and cannot provide correct labels
for some instances.

Definition The Knowledge Base (B) is defined as the
union of a set of instances (B+) which have been la-
beled by the oracle and a set of instances (B−) which
the oracle has confirmed that it does not have knowl-
edge to label.

The expected entropy of an unlabeled instance xi

with respect to sets B+ and B− is given by

H(yi; �(L)) = P (xi ∈ B+)H(yi|xi ∈ B+; �(L))
+P (xi ∈ B−)H(yi|xi ∈ B−; �(L)) (2)

It is clear that knowledge base B = B+ ∪ B−, and

P (xi ∈ B+) + P (xi ∈ B−) = 1 (3)

If the oracle does not know the label for an instance
xi (i.e., xi falls into the blind knowledge set), xi is re-
garded as an out-of-domain instance for both the ora-
cle and the underlying classifier �(L), which is trained
based on the oracle’s knowledge. That is if xi ∈ B−,
the value of yi is completely determined by xi (i.e.,
yi ≡ unknown) and according to the definition of the
conditional entropy, the conditional entropy is 0, i.e.

H(yi|xi ∈ B−; �(L)) = 0, if xi ∈ B− (4)

Combining the oracle’s knowledge set and the in-
stance’s information, the objective function in Eq.(1)
can be rewritten as

argmax
xi∈U

P (xi ∈ B+)H(yi|xi ∈ B+; �(L)) (5)

which represents the trade-off between minimizing the
probability of falling into the oracle’s blind knowledge
set and maximizing the entropy of instance.

2.2. Characterizing Blind Knowledge

To estimate P (xi ∈ B+) in Eq. (5), we employ the
diverse density concept [7] to build knowledge model
for the oracle.

We assume that some regions or concept set C ex-
ist to represent an oracle’s blind knowledge. We then
define the diverse density of the target concept C as the
probability that concept C is the target concept given the
acquired knowledge set (B+) and the observed knowl-
edge blind set (B−) of the oracle.

DD(C) = P (C|b+1 , b+2 , . . . , b+p , b−1 , b−2 , . . . , b−q ) (6)

Assume target concept set C consists of a number
of small concepts C = {c1, . . . , cm}, the conditional
probability of each small concept ck, given an instance
bτ in the knowledge base B, can be defined as a feature
value of bτ [2]. Then the feature for bτ is defined as

fC(bτ ) = [fc1(bτ ), . . . , fcm(bτ )]
T

= [P (c1|bτ ), . . . , P (cm|bτ )]T (7)

To estimate P (c|bτ ) for various concept classes, the
most-likely-cause estimator is defined as

P (ck|bτ ) ∝ d̄(ck, bτ ) = exp(−‖ck − bτ‖2
σ2

) (8)

We can use a sign function to define new label-
ing information for all instances in B as ł(B) =
[sign(b+1 ), . . . , sign(b

+
p ), sign(b

−
1 ), . . . , sign(b

−
q )]

T .
As a result, we form a well defined binary classification
problem as

P (xi ∈ B+) = �(fC(B), ł(B))[fC(xi); 1] (9)

where �(.)[fC(xi); 1] denotes the class distribution of
the classifier �(.) in classifying fC(xi) into class “1” and
one can use any learning algorithm to train �(.).

2.3. Active Learning with Blind Knowledge

Algorithm 1 lists major steps of the proposed frame-
work for active learning with blind knowledge. In
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Algorithm 1 Active Learning with Blind Knowledge
Input: (1) Unlabeled instances set: U ; (2) The oracleO; (3)

A learner �(.); and (4) The number of instances required
to be labeled by the oracle O (reqLabeled)

Output: Labeled instance set L
1: L ← Randomly label a tiny potion of instances from U
2: numLabeled← |L|; numQueries← 0
3: B− ← L; B+ ← ∅; B ← B+ ∪ B−

4: while numLabeled ≤ reqLabeled do
5: �(L)← Train a leaner from labeled set L
6: �(fC(B), ł(B))←Modeling the blind knowledge
7: for each xi in U do
8: fC(xi)← Transform xc to new feature space Rc

9: P (xi ∈ B+) ← Estimate likelihood of xi belong-
ing to O’s blind knowledge (Eq.(9))

10: H[xi]← Calculate expected entropy of xi (Eq.(2))
11: end for
12: i∗ ← argmaxxi∈U H[.]
13: yi∗ ← Query the label of xi∗ from the oracle O
14: if the oracle answers “I don’t know the label” then
15: B− ← B− ∪ xi∗ ;
16: else
17: L ← L ∪ (xi∗ , yi∗); B+ ← B+ ∪ xi∗

18: numLabeled← numLabeled+ 1
19: end if
20: U ← U \xi∗ ; B ← B+ ∪ B− Update knowledge B
21: numQueries← numQueries+ 1
22: end while

each query, the algorithm builds a benchmark learner
�(L) from labeled instance subset to estimate uncer-
tainty of each unlabeled instance and builds a classi-
fier �(fC(B), ł(B)) to model oracle O’s blind knowledge
(Lines 5-6). The instance xi∗ with the largest utility
value is selected and submitted to the oracle to query
for the label (Lines 7-12). If the oracle O answers that
it does not know the label for xi∗ , the algorithm will in-
clude xi∗ into the oracle O’s blind knowledge set (B−).
The knowledge model of the oracle will be updated for
the next query (Line 20).

3. Experiments

We report the empirical study results of the proposed
method based on a real-world data set [1] and three UCI
benchmark data sets [6]. We use 10-fold cross valida-
tion for our experiments and report average results in
the paper. In our experiments, we compare our method
with several baseline active learning methods: DDLG:
Our framework: instances are transformed into new fea-
ture space Rc by using diverse density, and P (xi ∈ B+)
is calculated by using logistic classifier; ORLG: We
use instances in B+ and B− to train a logistic regres-
sion model, in the original feature space, through which

we can calculate P (xi ∈ B+); TRAL: A traditional
active learning algorithm [3] only considers the uncer-
tainty of the instance; and RAND: An algorithm which
randomly selects instances to ask for the oracle’s labels.
There is no mechanism for handling blind knowledge of
the oracle in TRAL and RAND.

Nature scene data set. The data set was first used in
pattern classification problem [1]. We use the Mountain
category and transfer the data set into a binary classi-
fication problem (mountain vs. no-mountain). All in-
stances containing multiple labels are regarded as the
samples belonging to the labeler’s blind knowledge. In
the experiment, we first converted images into CIE Luv
color space with 294 dimensional feature vector [1], and
then collect 2,407 images and extract 142 features by
using Principle Component Analysis.

In Figure 2(a), the proposed DDLG maintains the
best performance with respect to the classification accu-
racy and the number of successfully labeled instances.
The second best methods are ORLG and TRAL with
ORLG slightly better than TRAL. RAND shows the
worst performance. The above results assert that by
avoiding instances which belong to the blind knowl-
edge of the oracle, our method can acquire sufficient
labeled instances for training which helps build an ac-
curate classifier. Although ORLG also has the mech-
anism to avoid the blind knowledge, DDLG is better
than ORLG which works on the original feature space.
We believe that this explains the rationality of diversity
density for modeling oracle’s blind knowledge. For the
number of successfully labeled instance, there is a little
difference between TRAL and RAND because they do
not have any mechanism to avoid the blind knowledge
and do not have enough labeled instances to train a good
classifier. Because TRAL always try to select the most
informative instances, it is still better than RAND.

Benchmark data sets. For benchmark data sets, we
use a synthetic approach to simulate oracles with lim-
ited knowledge sets. In our experiments, we use k-
means to cluster the data into three subsets and ran-
domly choose one cluster for the oracle and assume
that all instances in this cluster can be accurately la-
beled by the oracle. By doing so, we leave instances in
the other two clusters as the oracle’s blind knowledge,
which means that the oracles can not provide true labels
for instances in the remaining two clusters.

The results in Figures 2(b)–(d) demonstrate that,
overall, DDLG outperforms all other methods for the
accuracy and the number of successfully labeled in-
stances. In most cases, the accuracy of ORLG is slightly
better (or much better in Figure 2(b)(d)) than TRAL
mainly because the latter does not have effective mech-
anisms to avoid a labeler’s blind knowledge although
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(a) Scene:Mountain
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(b) Vertebral Column
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(c) Breast Cancer
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(d) Haberman’s Survival

Figure 2: The accuracies of the classifiers (upper ones) and number of successfully labeled instances (lower ones) trained from the
data set L labeled by different methods w.r.t. different number of queries (numQueries).

it does have an active learning module. In addition,
Figure 2(b)–(c) show that the number of labeled in-
stances in TRAL is less than ORLG and the accuracy of
TRAL is much better than RAND. The results show that
active learning does improve the model performance
compared with random sampling. By avoiding a la-
beler’s blind knowledge, the DDLG can acquire most
labeled instances than other baseline methods for the
same number of queries. An active learner with a proper
modeling of the blind knowledge shows clear benefits to
improve the classification accuracy.

4. Conclusion

We formulated a new active learning paradigm
where the oracle used for labeling may be incapable
of labeling some query instances. The active learning
goal, in our new setting, is to carefully avoid the ora-
cle’s blind knowledge and select the most informative
instances for labeling. In the paper, we used diverse-
density framework to model the oracle’s blind knowl-
edge, and combined the uncertainty of each unlabeled
instance and its likelihood of belonging to the blind
knowledge to select instances for labeling. Empirical
results demonstrate that our proposed design can model
the oracle’s blind knowledge for active learning.
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