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Abstract 
 

We report on the moving hand gesture recognition 

technique using Adaptive Resonance Theory (ART).  

To detect the start and end points of a continuous 

moving gesture (known as “gesture spotting” 

problem), we propose the adaptive distributed 

prediction technique.  Our results show that, unlike 

conventional non-recurrent neural networks, the 

proposed technique can be utilized usefully in reliable 

real-time learning (2000 times faster than with 

alternative methods) and recognition of continuously 

moving patterns.  

 

 

1. Introduction 
 

Recent progress in understanding the dynamic 

behavior of the human brain facilitates the development 

of smart IT devices by incorporating novel design ideas 

from brain-inspired cognitive processing.  Previously, 

artificial neural networks such as the Multi Layer 

Perceptron (MLP) with the Back Propagation (BP) 

algorithm have been proposed as a pattern classifier in 

smart IT devices.  However, this network has always 

suffered from the stability-plasticity dilemma (for 

example, one cannot have both the stability 

(retainability) of old, previously learned patterns and 

the plasticity to rapidly learn new patterns).  Adaptive 

Resonance Theory (ART) has been applied to various 

systems because it can overcome this problem by 

mimicking human cognitive processing [1].  This 

algorithm uses an interaction between complementary 

processes of resonance and reset, which are predicted 

to control properties of attention and memory search 

just like a human brain (i.e., in multiple cortical areas) 

[2].  ART is often used as a static pattern classifier in 

applications where its architecture was not designed for 

analyzing continuously moving patterns in the manner 

of recurrent neural networks.  For this reason, the 

Hidden Markov Model (HMM) has been utilized as the 

classification algorithm in moving gesture recognition 

system [3]-[5].  In this paper, we demonstrate moving 

hand gesture recognition based on ART.  Since ART 

carries out match-based learning and prediction, 

continuous moving hand gesture recognition can be 

performed by adjusting the decision threshold of 

distributed prediction in the classification process.  

This decision threshold can be determined 

automatically before testing.  The results show that 95 

% recognition accuracy can be obtained by optimizing 

the decision threshold and the measurement period.  In 

addition, our results confirm that the learning time of 

ART was about 2000 times faster than HMM while 

maintaining comparable accuracy. 

 

2. Method and results 
 

Figure 1 shows the structure of moving hand gesture 

(time-varying pattern) recognition systems.  The 

moving objects were detected by using a dynamic 

vision sensor [6].  The tracking of moving objects can 

be done simply by spatiotemporally correlating the 

output of the vision sensor [7].  Figure 2 shows the 

hand gestures captured by our vision system when a 

subject is doing juggling.  In this case, the trajectory of 

a hand gesture can be easily and spontaneously 

detected by tracking the fastest motion.  The feature 

vectors extracted from this hand trajectory are 

recognized in the classification (ART) module.  In the 
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experiment, we performed the hand gesture recognition 

of Arabic numbers from ‘0’ to ‘9’ (all programs were 

coded in Java language). 

 

 
Figure 1. Structure of gesture recognition systems 

 

 
Figure 2. Hand gestures captured by the dynamic 

vision sensor 
 

2.1. Feature Extraction 
 

To improve the accuracy of gesture recognition, the 

feature extraction becomes critically important.  In the 

experiment, we considered 10 categories of hand 

gestures from ‘0’ to ‘9’ as shown in Fig. 3.  For each 

category of hand gesture, we extracted 11 feature 

vectors.  For example, the feature vector x represents 

the position of the hand motion which lies along the x 

axis in Cartesian coordinate system.  Similarly, the 

feature vector y represents the y-axis position.  The 

feature vectors dx and dy represent the relative 

variations in the x and y positions.  In addition, we 

derived various feature vectors (for example, angle, 

angular speed, linear speed, etc.).   
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Figure 3. Various extracted feature vectors for the 

input gestures (‘0’~‘9’) 

 

Figure 4 shows the recognition accuracy of 100 test 

gestures measured while changing the feature vectors.  

In this case, 100 gestures were trained previously 

before the test procedure.  The committed nodes 

represent the output categories learned by the ART 

algorithm.  Our results show that, among 11 feature 

vectors, only 5 feature vectors (i.e., y, dx, dy, angle, 

and incremental angle) exceed 90 % recognition 

accuracy.  However, the performance of the feature 

vector y can deteriorate when small or large patterns 

are utilized (for example, the accuracy was reduced to 

be less than 60 % in small-sized gestures).  In addition, 

the recognition accuracy of the feature vector angle 

was measured to be less than 90 % in a large-scale test 

procedure (800 test results).  Thus, we found out that 

the feature vectors dx, dy, and incremental angle had 

superior performance to others for dynamic gesture 

recognition.  In Figure 4, the feature vector dx+dy 

appeared to have the best performance in gesture 

recognition since the accuracy is maximum (100 %) 

while the active committed nodes are minimum (10).  

Thus we chose the feature vector dx+dy for 

recognizing dynamic hand gestures. 
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Figure 4. Recognition accuracy measured while 

changing the feature vectors  

 

2.2. Recognition of Continuously Moving 

Gestures 
 

Basically, moving gesture recognition has one 

critical problem, known as “gesture spotting”, to detect 

the start and end points of a continuous gesture.  This 

problem can be solved by using either HMM or 

recurrent neural networks.  However, the previous 

method used in HMM-based classification requires a 

heavy computational load due to its large number of 

states and frame-based calculation [4]-[5].  To 

overcome these problems, in this paper, we applied the 

default ARTMAP algorithm based on the decision 

threshold adjustment of distributed prediction as shown 

in Fig. 5.  Default ARTMAP employs winner-take-all 

coding during training and distributed coding during 

testing [8].  This algorithm produces continuous-valued 

test set predictions distributed across output classes.  

Then, as shown in Fig. 5 (b), the start and end points of 

the continuous gesture can be recognized simply by 

detecting when the distributed prediction exceeds the 

decision threshold.  Thus, the proposed technique 

requires the pre-evaluation process to obtain a proper 

decision threshold before testing. 
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Figure 5. Default ARTMAP flowchart (a) training and 

(b) testing 
 

Figure 6 (a) shows the signal from input to coding 

node (defined in [8]) calculated when the feature vector 

of the gesture ‘0’ was entered into the classification 

module sequentially over time.  Basically, this value 

increases with the similarity between the input and the 

committed node.  As expected, the signal from input to 

coding node of the committed node (output class) ‘0’ is 

higher than the others and increases as the starting time 

of the input gesture (feature vector) becomes 

synchronized with the learned gesture.  Thus, this 

phenomenon shows that we can discriminate the 

desirable committed node from the others by adjusting 

a threshold.  In this case, two techniques based on the 

threshold can be utilized as shown in Fig. 6 (b).  One is 

to determine the output class as soon as the signal from 

input to coding node exceeds the threshold (threshold 

1).  The other is to calculate the maximum value during 

a certain period of time after when it becomes higher 

than the threshold (threshold 2).  The results show that 

the performance of the threshold 2 is superior to the 

threshold 1 technique.  For example, the maximum 

accuracy was measured to be 99 % when the threshold 

2 and calculating period were set to be 61.5 and 150 ms, 

respectively. 
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Figure 6. (a) The signal from input to coding node 

calculated when the gesture “0” was entered 
sequentially over time (b) Recognition accuracy 
measured while varying the threshold 

However, the performance of the gesture 

recognition system can be degraded when the speed of 

the testing gesture is different to the trained gesture as 

shown in Fig. 7.  Our results show that the measured 

accuracy of the fast-speed gesture (100 test sets) (i.e. 

two times faster than the normal-speed trained gesture) 

was less than 20 % in case of without training.  In this 

case, the measured accuracy can be improved 

dramatically by training the fast-speed gesture in 

advance.  It should be noted that the performance 

measured when the fast-speed gesture is trained 

separately against the normal-speed gesture (i.e., 

trained in a different class) is superior to the case using 

same-class training (Fig. 7 shows that the measured 

accuracy is increased up to 84 %).  To evaluate the 

performance of various gestures, we measured the 

recognition accuracy while varying the threshold and 

period simultaneously as shown in Fig. 8.  In this 

experiment, various gestures with different speeds were 

simulated.  A total of 700 gestures (normal speed = 500, 

fast speed = 100, medium speed (between normal and 

fast) = 100) were trained and 1000 gestures (normal 

speed = 800, fast speed = 100, medium speed = 100) 

were tested.  The results show that the maximum 

recognition accuracy was measured to be 95 % when 

the decision threshold and calculating period are 60.7 

and 11 (/samples, i.e., 330 ms), respectively.  This 

decision threshold depends on the application, but can 

be determined automatically because the parameters 

used in the choice by difference rule (for example, 

adaptive weights and dimension of an input pattern) are 

set before testing [9].  It should be noted that, the 

computation of default ARTMAP was performed 

within 3 ms per one feature input (@2-GHz CPU).  

Thus, we expect that this technique based on threshold 

adjustment can be utilized usefully for real-time 

recognition of various dynamic patterns. 
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Figure 7. Recognition accuracy measured when a 

fast-speed gesture is applied 
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Figure 8. The recognition accuracy measured while 

varying the threshold and period (number of training 
gestures = 700, number of testing trials = 1000) 

 

In addition, the performance comparison between 

ART and HMM is shown in Fig. 9.  For this 

comparison, we utilized Left-Right (LR) and Left-Right 

Bended (LRB) models as the HMM classifier (features: 

angle, number of states: 5) [3].  The results show that 

the learning times of HMM and ART are increased 

with the number of training gestures as shown in Fig. 9 

(a).  In particular, we found out that the learning time 

of HMM is about 2000 times greater than ART (~30 

ms when the number of training gestures is 400).  This 

is mainly because the conventional Baum-Welch 

algorithm calculates every state transition probability 

during learning while the synaptic weight in ART is 

updated only when the input is close enough to internal 

expectations (match-based learning) [8]-[10].  Fig. 9 

(b) shows the measured accuracy while varying the 

number of training gestures.  There was not much 

difference in measured accuracies between ART and 

HMM (> 90 %). 

 

 
Figure 9. The performance comparison between ART 

and HMM (a) learning time (number of feature 
elements = 30) and (b) accuracy (number of testing 
trials = 200) 

 

3. Summary  
 

We have reported on learned gesture categorization 

and recognition using the default ARTMAP model.  

Unlike conventional non-recurrent neural networks, the 

gesture spotting problem can be easily solved by using 

the adaptive decision threshold technique in the 

distributed prediction process.  The results showed that 

95 % recognition accuracy could be obtained by 

optimizing the decision threshold and the calculating 

period and that learning is about 2000 times faster than 

with alternative methods.  ARTMAP models also have 

a great advantage of solving the stability-plasticity 

dilemma and thereby self-stabilizing their learned 

memories under fast learning conditions.  Thus, this 

technique holds promise for use in reliable real-time 

learning and recognition of various dynamic patterns 

(for example, gesture recognition, hand writing 

recognition, and speech recognition). 
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