
Robust Motion Segmentation via Refined Sparse Subspace Clustering

Hao Ji1, Fei Su1,2

1 School of Information and Communication Engineering
2 Beijing Key Laboratory of Network System and Network Culture

Beijing University of Posts and Telecommunications, Beijing, China

Abstract

In this paper, a new refined sparse subspace cluster-

ing (RSSC) method is proposed for robust motion seg-

mentation. Given a set of trajectories of tracked feature

points from multiple moving object, RSSC aims at seek-

ing a sparse representation (SR) for each trajectory with

respect to a recovered low-rank dictionary. The seg-

mentation of motion is obtained by applying spectral

clustering to the affinity matrix built by this SR. Com-

pared to the conventional sparse subspace clustering

(SSC) algorithm, our RSSC integrates sparse represen-

tation and low-rank subspace structures recovery into

a unified framework. Furthermore, SR is obtained from

the recovered dictionary instead of the initial given dic-

tionary built by contaminated data, making RSSC more

robust to data noise. Experiments on toydata and real

video sequences (Hopkins 155 database) show the su-

periority of our approach over several current state of

the art methods.

1. Introduction

Motion segmentation is a hot research topic in com-

puter vision due to its significant role in video analysis

and understanding. While traditional research focuses

on the static scenes, there has been a growing interest

in the analysis of dynamic scenes. Such scenes may

contain multiple motions, including objects motion and

background motion due to camera moving. As illus-

trated in Fig.1, the basic task of motion segmentation is

to segment a set of trajectories of tracked points into dif-

ferent groups corresponding to respective motions with-

out any prior or label information.

Under the affine camera model, all the trajectories

associated with a single rigid object live in a 3 dimen-

sional affine subspace. Given tracked points trajectories
{

xfp ∈ R
2
}f=1,...,F

p=1,...,P
in F 2-D frames of P 3-D points

Figure 1: Frames from two example video sequences involv-

ing three motions. Left: two moving checkerboards plus back-

ground. Right: two moving automobiles plus background.

{

Xp ∈ R
3
}

p=1,...P
on a rigidly moving object. The

relationship between the tracked points and the corre-

sponding 3-D coordinates is
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X1 · · ·XP

1 · · · 1

]

(1)

where xfp is the 2-D coordinates of point p at frame f ,

Af ∈ R
2×4 is the affine motion matrix at frame f and

Xp is the 3-D coordinates of point p. As the rank of

right hand side of Eq.1 is at most 4, all columns of the

matrix of the left hand side must lie in a 4-dimensional

subspace of R2F . Assume now we are given P trajecto-

ries from n rigidly moving objects (the rank is bounded

by 4n ≪ 2F ), the motion segmentation problem re-

duces to a subspace clustering process [1].

Existing works on motion segmentation can be

roughly divided into four categories: iterative, factor-

ization, algebraic and spectral clustering. Iterative ap-

proaches, such as K-subspaces and RANSAC [2], iter-

atively find a min-max estimation. Factorization-based

methods [3] find a data segmentation from the similarity

matrix built by factorization. Algebraic methods, such

as Generalized Principal Component Analysis (GPCA)

[4], fit data with a polynomial model whose gradient

gives the normal vector to the subspaces. In order to

achieve robustness to noise, Sparse Subspace Clustering
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(SSC) [5], as a spectral clustering way, uses the spars-

est representation from given dictionary to construct the

‘block-sparse’ affinity matrix. However, utilizing the

initial data matrix as dictionary directly may cause in-

accuracy due to corrupted data.

In this paper, we present a Refined Sparse Sub-

space Clustering (RSSC) method to address the contam-

inated dictionary problem. Compared to initial SSC,

RSSC aims at removing noise and outliers from data

and performing robust subspace clustering simultane-

ously. Since the low-rank nature of trajectories ma-

trix (at most 4n), recovery of dictionary is performed

by adding a nuclear norm regularization to the objec-

tive function. Meanwhile, the ‘block-sparse’ attribute

of affinity matrix is also preserved by using sparse rep-

resentation driven by ℓ1-norm. We also propose an effi-

cient algorithm based on inexact Augmented Lagrange

Multiplier (IALM) method [6] to solve the RSSC opti-

mization model.

2. Robust Motion Segmentation via RSSC

In this section, we will first briefly review the ini-

tial SSC method for subspace clustering. Then our Re-

fined Sparse Subspace Clustering (RSSC) approach is

proposed to improve the robustness to noises. Finally

a efficient IALM method is presented to solve the opti-

mization problem.

2.1 Sparse Subspace Clustering

SSC [5] uses the sparsest representation with respect

to a given dictionary to construct the ‘block-sparse’

affinity matrix. Such a representation R can be obtained

by solving the following program

min
R

1

2
‖D−DR‖2F + λ‖R‖1

s.t. Rii = 0 i = 1, 2 · · · , P
(2)

where ‖.‖F is F -norm, ‖.‖1 is ℓ1-norm, D ∈ R
K×P is

the data matrix, R ∈ R
P×P is the sparse representation

and is used as the affinity matrix, λ > 0 is a parameter.

However, utilizing the data matrix as the given dictio-

nary directly may cause inaccuracy because data points

drawn from a union of subspaces are always contami-

nated by noise.

2.2 Refined Sparse Subspace Clustering

As illustrated in Fig.2, Refined Sparse Subspace

Clustering (RSSC) aims at simultaneously recovering

the corrupted dictionary and obtaining the sparse repre-

sentation. Recovered data are used instead of the noisy
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Figure 2: The process of RSSC in a mixture of two 1D sub-

spaces. Top fig shows the data sampled from subspaces with

noise, bottom figs shows the recovered data and the corre-

sponding ’block-sparse’ representation by RSSC.

data for SR. Due to the low-rank nature of data matrix

(bounded by 4n, n is the number of subspaces or mo-

tions), we assume that D = X + E, where D is the

contaminated data matrix, X is the recovered low-rank

data matrix and E denotes noises or outliers. There-

fore, rather than directly obtaining sparse representa-

tion from noisy dictionary D, we get the ‘block-sparse’

affinity matrix based on the clean dictionary X. Follow-

ing these perspectives, we get the following optimiza-

tion model for robust motion segmentation problem:

min
X,R,E

‖E‖ℓ + µ1rank(X) + µ2‖R‖0

s.t. D = X+E

X = XR

Rii = 0 i = 1, 2 · · · , P

(3)

where ‖.‖ℓ is some kind of regularization strategy, such

as F -norm for noise or reconstruction error, ℓ1-norm

for outliers. In the following paper, we only consider

the F -norm case of regularization strategy. The above

optimization problem is non-convex and NP-hard. For-

tunately, as suggested by compressive sensing (CS) the-

ory [7] and matrix completion method [8], the follow-

ing convex optimization provides a good surrogate for

Eq.3:

min
X,R

1

2
‖D−X‖2F + µ1‖X‖∗ + µ2‖R‖1

s.t. X = XR

Rii = 0 i = 1, 2 · · · , P

(4)

where ‖.‖∗ denotes nuclear norm (sum of singular val-

ues) of a matrix.
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Algorithm 1 Solving Problem (4) by Inexact ALM

Input: contaminated data matrix D

Initialize: X = Q = D, R = L = 0, Y1 = 0, Y2 = 0,

Y3 = 0, β = 10−6, maxβ = 1010, ρ = 1.1, ǫ = 10−6.

while not converged do

1: Update Q, R, L and X respectively

Q = argmin 1

2
‖Q− (X+Y2/β)‖

2

F + µ1

β
‖Q‖∗

R = 1

β
(XTX+I)−1

[

XTY1 −Y3 + β(XTX+ L)
]

L = argmin 1

2
‖L− (R+Y3/β)‖

2

F + µ2

β
‖L‖1

s.t. Lii = 0 i = 1, 2 · · · , P

X =
[

D−Y1(I−R)T −Y2 + βQ
]

{I+ β[ (I −

R)(I−R)T + I ]}−1

2: Update the multipliers

Y1 = Y1 + β(X−XR)

Y2 = Y2 + β(X−Q)

Y3 = Y3 + β(R− L)

3: Update the parameter β = min(ρβ,maxβ)

4: Check the convergence conditions

‖X−XR‖∞ < ǫ, ‖X−Q‖∞ < ǫ, ‖R− L‖∞ < ǫ

end while

2.3 Solving the RSSC by IALM

In this section, we propose an efficient algo-

rithm based on inexact Augmented Lagrange Multiplier

(IALM) method [6] to solve the above RSSC optimiza-

tion model. We first convert Eq.4 to the following

equivalent problem by introducing two auxiliary vari-

ables Q and L:

min
X,R,Q,L

1

2
‖D−X‖2F + µ1‖Q‖∗ + µ2‖L‖1

s.t. X = XR

X = Q

R = L

Lii = 0 i = 1, 2 · · · , P

(5)

which can be solved by minimizing the following aug-

mented Lagrange function:

J (X,R,Q,L,Y1,Y2,Y3)
= 1

2
‖D−X‖2F + µ1‖Q‖∗ + µ2‖L‖1

+〈Y1,X−XR〉+ 〈Y2,X−Q〉+ 〈Y3,R− L〉

+β
2
(‖X−XR‖2F + ‖X−Q‖2F + ‖R− L‖2F ),

(6)

where Yi, i = 1, 2, 3 are Lagrangian multipliers and

β > 0 is penalty parameters for the constrains. IALM

is derived by successively minimizing the augmented

Lagrangian function J with respect to X, R, Q and L,

which is outlined in Algorithm 1. The affinity matrix

can be obtained by R + RT after solving problem 4.

Then spectral clustering algorithm is used on the affinity

matrix to produce the final segmentation results.

3. Experiments

3.1 Toy Data

In this experiment, we demonstrate the robustness of

our RSSC method to contaminated data and the recov-

ery ability by low-rank regularization. ‘Block-sparse’

attribute is also preserved by sparse representation with

respect to the recovered dictionary. We construct 3 in-

dependent subspaces {Si}
3

i=1
⊂ R

100, the rank of each

base Ui ∈ R
100×4 is 4, so each subspace has a di-

mension of 4. We obtain the contaminated data matrix

D ∈ R
100×600 by sampling 200 data from each sub-

space and adding Gaussian noise to the generated data.

RSSC problem is solved by inexact ALM as detailed in

Algorithm 1.

Figure 3: An illustration of sparse presentation with different

iterations. Top: Sparse coefficients after 10, 20, 40 iterations.

Bottom: Similarity graphs after 10, 20, 40 iterations.
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Figure 4: Left:The non-zero number of coefficients in sparse

representation matrix as iteration continues. Left:The rank of

recovered matrix as iteration continues.

Fig.3 shows the sparse coefficients and correspond-

ing similarity graphs after 10, 20, 40 iterations, the

representation is more sparser as the iterations contin-

ues. Fig.4 shows the quantitative result of the changes

of non-zero number of sparse coefficients and the rank

of the recovered dictionary as iteration continues. The

non-zero coefficients number reduces from 109,572 to

4,360, the rank of data matrix reduces from 100 to 12.
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Table 1: Average errors(%) for sequences with 2 motions.

Two Motions

GPCA LSA RANSAC SSC RSSC

Checkerboard: 78 sequences

Average 6.45 8.37 5.62 1.41 1.67

Traffic: 31 sequences

Average 2.33 4.75 2.07 1.95 1.39

Articulated: 11 sequences

Average 0.79 3.29 1.82 3.70 0.81

All: 120 sequences

Average 3.19 5.47 3.17 2.35 1.29

Three Motions

GPCA LSA RANSAC SSC RSSC

Checkerboard: 26 sequences

Average 31.68 30.25 25.43 6.04 3.52

Traffic: 7 sequences

Average 26.88 22.93 16.06 7.57 3.01

Articulated: 2 sequences

Average 31.48 23.80 9.39 6.34 3.24

All: 35 sequences

Average 30.01 25.66 16.96 6.65 3.26

3.2 Real Data: the Hopkins155 Database

In this section, we evaluate our RSSC approach com-

pared to other state-of-the-art methods on the Hopkins

155 motion database [9], such as GPCA [4], LSA [10],

RANSAC [2] and SSC [5]. The database consists of

155 video sequences, each of which has two or three

motions which can be divided into three categories:

checkerboard, traffic and articulated sequences. Some

example frames are illustrated in Fig.1. The points tra-

jectories are extracted automatically by a tracker and

the trajectories are always contaminated by noise. Ta-

ble 1 shows detailed average errors for 120 sequences

(78 checkerboard, 31 traffic, 11 articulated sequences)

with two motions and 35 sequences (26 checkerboard,

7 traffic, 2 articulated sequences) with three motions.

Obviously, our RSSC method performs best among all

algorithms with lowest average errors.

4. Conclusions

In this paper, we propose a convex regularization

based subspace clustering method for robust motion

segmentation. By introducing low-rank and sparse reg-

ularizations, our RSSC simultaneously removes noise

from data and performs robust sparse representation.

The experimental results demonstrate the superiority

and robustness of our method over other state-of-the-art

methods.
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