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Abstract

This paper presents a handwritten digit recognition
method based on cascaded heterogeneous convolution-
al neural networks (CNNs). The reliability and com-
plementation of heterogeneous CNNs are investigated
in our method. Each CNN recognizes a proportion of
input samples with high-confidence, and feeds the re-
jected samples into the next CNN. The samples rejected
by the last CNN are recognized by a voting committee of
all CNNs. Experiments on MNIST dataset show that our
method achieves an error rate 0.23% using only 5 C-
NNs, on par with human vision system. Using heteroge-
neous networks can reduce the number of CNNs needed
to reach certain performance compared with network-
s built from the same type. Further improvements in-
clude fine-tuning the rejection threshold of each CNN
and adding CNNs of more types.

1. Introduction

Considerable efforts have been devoted to handwrit-
ten digit recognition for many years. The proposed
methods are based on different classifiers, such as K-
Nearest neighbors [1], boosted stumps [2] and neural
networks [3].

Recently, CNN-based methods yield state-of-the-art
performance [4, 5]. The CNN automatically learn-
s translation-invariant features without using hand-
crafted feature extractors. The CNN captures topologi-
cal properties of the input by the operations of convolu-
tion and spatial pooling. Spatial pooling is important to
obtain translation-invariant features. Two spatial pool-
ing techniques are popularly used: Sub-sampling [6]
and bio-inspired max-pooling [7].

Previous research mainly contributes to the improve-
ment of a single CNN [8, 9]. Handwriting recognition
based on multiple CNNs of the same architecture is s-
tudied in [10]. However, we focus on the reliability

and complementation of heterogeneous CNNs. In our
method, each CNN in the cascade will adopt a strict re-
jection threshold. On the other hand, CNNs of different
types are supposed to be complementary in our method.
Analysis in Subsection 2.1 and experimental results in
Subsection 3.2 will show the advantage of using hetero-
geneous CNNs.

The rest of this paper is organized as follows: The
framework is described in Section 2. Then Section 3
presents the experimental results on MNIST, and the
further analysis. Section 4 draws the conclusions.

2. Proposed method

The framework of our proposed method is shown in
Fig. 1. Our method is composed of S stages. The first
S − 1 stages respectively correspond to a CNNi, and
the last stage is a voting Committee constructed by
combining the above all CNNi (i = 1, ..., S − 1). All
CNNi are heterogeneous, and each CNNi is trained
separately with randomly distorted training samples in
our method. The testing procedure is as follows: The
testing samples are fed into CNN1. Then each CNNi

recognizes a proportion of input samples and feeds the
rejected samples into the next stage, i.e., CNNi+1 or
the Committee. The Committee recognizes all in-
put samples from CNNS−1. The rejection rate of each
CNNi is controlled by a threshold Ti.

2.1. Heterogeneous CNNs

The main difference between various CNNs is the
operations of spatial pooling. Empirical results show
that max-pooling outperforms sub-sampling, and con-
verge faster [11]. However, recent theoretical analysis
indicates that the optimal pooling type for a given clas-
sification problem may be neither sub- nor max- pool-
ing, but something in between [12]. Therefore, the C-
NNs based on the above two pooling types will both be
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Figure 1. Framework of proposed method.

used in our method. Besides, we also introduce the s-
parseness measures which are often used for traditional
neural networks to reduce the number of free parameter-
s and avoid over-fitting. The CNNs with sparse weight-
s are constructed by randomly reducing some connec-
tions between spatial pooling and convolutional layer-
s before training. The above different types of CNNs
use the same classical MSE cost function and the same
squashing function.

2.2. Rejection rule

The top two most reliable output of CNNi at output
layer are denoted as g1 and g2. Given the nth testing
sample, the rejection rule is then defined as

(g1n − g2n) < Ti. (1)

The threshold Ti should be strict, ensuring that the most
of suspicious samples will be rejected by a CNN based
on a strict rejection rule, and the remaining samples will
be recognized with high confidence. The Ti is estimat-
ed on the training sets. Given M training samples, the
threshold Ti is defined as

Ti = αi ·max
m

(g1m − g2m) (2)

where αi ∈ [0, 1] and m = 1, ...,M .

3. Experimental results

Our method is applied to MNIST dataset of hand-
written digits to evaluate its effectiveness. The perfor-

mance at each stage, the misclassified samples and the
rejection threshold are further analyzed.

3.1. Settings of parameters and training

The number of stages S is fix to 6. Parameter settings
of these six stages are shown in Table 1. “I”, “C”, “M”,
“S”, “F” and “O” represent input, convolutional, max-
pooling, sub-sampling, full-connected and output layer.
The number of feature maps and the kernel size of a lay-
er are also specified in Table 1, e.g., “6C5” indicates that
this convolutional layer has 6 feature maps and the ker-
nel size is 5. The models of CNN1 ∼ CNN4 are the
same except that some neurons in CNN4 are random-
ly disconnected before training as stated in Subsection
2.1. The only difference between the first four CNNs
and CNN5 is the type of spatial pooling operators, i.e.,
max-pooling or sub-sampling. The size of input image
is 29x29. The squashing function of a neuron we use is
defined as

y = 1.1 · tanh(x) (3)

where y and x are the output and input of a neuron, and
tanh(·) is hyperbolic tangent.
CNN1 ∼ CNN5 are all trained using on-line gra-

dient descent, and the maximum number of training e-
pochs is fix to 800. Actually, if the averaged error rate
of the latest five epochs is lower than 0.1%, the train-
ing will be stopped. To achieve better generalization,
the training set is expanded by random distortion tech-
niques including elastic deformations [4], scaling and
rotating transforms.
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Table 1. Parameters settings at each stage
Stage Model

CNN1 I-6C5-6M3-50C3-50M2-100F5-100F1-O
CNN2 I-6C5-6M3-50C3-50M2-100F5-100F1-O
CNN3 I-6C5-6M3-50C3-50M2-100F5-100F1-O
CNN4 I-6C5-6M3-50C3-50M2-100F5-100F1-O
CNN5 I-6C5-6S3-50C3-50S2-100F5-100F1-O
Committee

Table 2. Performance on MNIST dataset
Reference Method Error Rate

Lecun et al. [6] Boosted Letnet-4 0.70%
Mizukami et al [13] KNN 0.57%
Lauer et al. [14] TFE-SVM 0.54%
Keysers et al. [1] KNN 0.52%
Simard et al. [4] CNNs 0.40%
Ranzato et al. [5] CNNs 0.39%
Ciresan et al. [10] CNNs 0.27%
Our Method CNNs 0.23%

Better performance can be achieved by using dif-
ferent threshold Ti for each CNN, however, the com-
bination of thresholds may be too sensitive to train-
ing samples. Therefore, we apply the same threshold
T = maxi Ti to all CNNs, instead of respective Ti.
The T is the most strict rejection threshold among Ti
(i = 1, ..., S − 1). Although the CNNs are heteroge-
neous, they use the same MSE cost function and the
same squashing function as stated in Subsection 2.1.
Therefore, the output ranges of neurons at output layers
across all CNNs are similar. Adopting the same thresh-
old is thus reasonable. According to the squashing func-
tion in Eq. 3, the upper bound of g1m − g2m in Eq. 2
is 2.2. Therefore, we fix the threshold T to 2 ensuring a
high confidence.

3.2. Performance on MNIST dataset

The MNIST dataset of handwritten digits is com-
posed of 60000 samples for training and 10000 sam-
ples for testing [6]. We follow the standard usage of
MNIST dataset as [1, 4, 5, 6, 10, 13, 14], and the re-
spective error rates of CNN1 ∼ CNN5 are 0.37%,
0.38%, 0.34%, 0.61% and 0.41%. Our method finally
achieves the lowest error rate 0.23% as shown in Table
2. Besides, the recognition error rate of human is es-
timated as 0.2% [15], our result is thus comparable to
human vision.

Table 3. Performance at each stage
No. Stage Recognized Misclassified

1 CNN1 13.83% 0
2 CNN2 8.20% 0
3 CNN3 10.36% 1
4 CNN4 16.54% 0
5 CNN5 25.27% 7
6 Committee 25.80% 15

100% 23

Figure 2. Misclassified samples at each
stage. The lower label is “ground truth→
prediction”.

Each stage in our method contributes to the perfor-
mance as shown in Table 3. The column “recognized”
is the ratio of the number of recognized samples at
the stage to the number of all testing samples. To-
tally only 25.8% samples are rejected by the first five
stages (CNN1 ∼ CNN5), and further recognized by
stage 6 (Committee). The samples misclassified by
the CNN3, CNN5 and the Committee are shown in
Figure. 2. The pairs “4-9” and “5-6” are confused due
to cursive writing while other misclassified samples are
due to missing strokes, stroke touching and etc. Most
of these samples are difficult for a machine to make a
correct prediction.

Changing the sequence of cascaded CNNs does not
have impacts on the performance. However, the per-
formance is decreased by 13%∼39% without using any
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Figure 3. Error rates using different
thresholds.

Table 4. Number of needed CNNs
No. Needed CNNs Error rate

Max-Pooling 7 0.23%
Sub-Sampling > 10 0.23%
Sparse Weights >10 0.23%

one of the five CNNs.
Strict rejection threshold ensures lower error rate as

shown in Fig. 3. The error rate rises sharply when the
threshold is smaller than 1.5, because the current single
CNN is more unreliable for these samples.

Using heterogeneous networks can reduce the num-
ber of CNNs needed to reach certain performance com-
pared with networks built from the same type as shown
in Table 4. The first column in Table 4 corresponds to
the types of CNNs stated in Subsection 2.1. To achieve
the error rate 0.23%, at least 7 CNNs of type “Max-
Pooling” are needed, while only 5 heterogeneous CNNs
are used to achieve the same performance as shown in
Table 1.

We use a system with Xeon X5690 (3.47GHz) and
24GB RAM. OpenMP is enabled for parallel comput-
ing. The testing speed is about 2.3ms per sample.

4. Conclusions

A handwritten digit recognition method based on
cascaded heterogeneous CNNs is presented. Experi-
ments on MNIST dataset show the effectiveness of our
method. Some misclassified samples are due to miss-
ing strokes, stroke touching which patterns are not con-

tained in the training sets. Therefore, adding training
samples corresponding to such patterns can further im-
prove the performance.
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