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Abstract 
 

This paper proposes a cascaded classifier frame-

work for better image recognition. The proposed meth-

od is based on the confidence values given by the clas-

sifiers. By using our proposed topN-Exemplar SVM in 

the second stage and comparing the confidence values 

with those from the first stage, the classification results 

with less confidence are successfully updated. The va-

lidity of our algorithm has been demonstrated by the 

experiments using three standard image datasets. 

 

1. Introduction 
 

We have witnessed significant improvements in ob-

ject recognition in the last decade. For instance, the 

classification accuracy for the Caltech-101 dataset [1] 

was around 40% [2][3] in the mid 2000’s but it is now 

improved up to 73% and higher [4]-[14].  

In most cases, the classifier is conventional: a multi-

class support vector machine (SVM) or AdaBooost is 

used. The object’s class is decided by picking up the 

class whose confidence is the highest. The confidence 

is a signed distance from the hyper plane in the case of 

SVM. However, this strategy does not necessarily 

mean that the classifier is always confident of its deci-

sions. Table 1(a) shows the statistics of the confidence 

values for the Caltech-101 dataset using the ScSPM [4]. 

It shows that only 53% of the highest confidence scores 

are positive. When the confidence is positive, 99% of 

the predicted labels are correct. On the other hand, if 

the highest confidence is negative, only 58% of them 

are correct and 42% of them are wrong. Although tak-

ing the class with the highest confidence has been the 

best choice so far even if it is negative, it shows that 

there is some room for improvement. 

Some works have been proposed to improve the 

classification results. One possible solution is limiting 

the candidate classes in the first stage classifier and 

training the second stage classifier only with the ex-

tracted candidates as proposed in [3]. A cascaded clas-

sification model (CCM) [16] is a method to train the 

second stage classifiers using the outputs from the first 

stage classifiers. Another approach is using an exem-

plar-SVM [17]. In this approach, an SVM is trained for 

each training sample so that the classifier would be-

come sensitive only to a specific exemplar. However, 

as shown in Section 4, none of these approaches works 

properly in the framework of large-scale image datasets 

with a lot of different object classes.  

In this paper, we propose a confidence-assisted two-

stage classification framework using our topN-

exemplar-SVM classifier. The topN-exemplar-SVM 

classifier is a combination of the SVM-kNN [3] and the 

exemplar-SVM [17] which work complementarily to 

each other. The experiments using three standard da-

tasets have shown promising results. 

The rest of this paper is organized as follows. Sec-

tion 2 demonstrates detailed analysis on the classifica-

tion performance of some state-of-the-art algorithms. 

Section 3 describes the proposed algorithm. The exper-

imental results are demonstrated in Section 4, followed 

by the concluding remarks in Section 5. 

Table 1. Classification accuracy as a function of the 

top confidence value to the input image: (a) Caltech-

101 [1], (b) Caltech-256 [15]. ScSPM was used. 

(a) 

 
TRUE FALSE Total 

confidence>0 
99% 

(3183) 

1% 

(45) 

 

(3228) 

confidence<0 
58% 

(1667) 

42% 

(1189) 

 

(2856) 

(b) 

 
TRUE FALSE Total 

confidence>0 
97% 

(2434) 

3% 

(69) 

 

(2503) 

confidence<0 
35% 

(7169) 

65% 

(13225) 

 

(20394) 
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2. Detailed Analysis on Recognition Results 
 

Table 1 shows the image classification accuracy as a 

function the top confidence value to the input image. 

Here, ScSPM [4] with a linear SVM is used. When the 

confidence values are positive, most of the predicted 

labels are correct. However, such cases are not so many. 

In fact, 47% of the top confidence values are negative. 

When they are negative, the accuracy decreases drasti-

cally. This tendency becomes clearer in the case of the 

Caltech-256 dataset (Table 1(b)). When the top confi-

dence is negative, the performance is miserably low. 

Then, in which place are the correct answers? Fig. 1 

demonstrates the percentage of the correct answers 

being included in the top-N classes for ScSPM and 

LLCSPM [5]. The Caltech-101 and the Caltech-256 

datasets were used. For instance, it is observed that 

87% of correct labels are within the top-3 classes and 

89% of them are in the top-5 classes in the case of 

ScSPM for Caltech-101. This shows that about 8% of 

the correct answers are either in the 2nd or 3rd place 

even though they are not the top. 

 

3. Proposed Algorithm 
 

3.1. Confidence-Assisted Multi-Stage Classifier 
 

The flowchart of our proposed method is shown in 

Fig. 2. The first stage classifier is a conventional one 

such as SVM. We assume that the first stage classifier 

outputs a confidence value for each class. The first 

stage classifier is accurate enough especially when its 

top confidence value is positive. Therefore, in the se-

cond stage, we only care about the case where the top 

confidence value is negative. And only when the confi-

dence value in the second stage is larger than that in the 

first stage, the class label is updated. If not, the class 

label given by the first stage is employed. 

There are some algorithms which use multiple 

(weak) classifiers such as AdaBoost and Viola-Jones 

cascaded classifier [18]. AdaBoost uses a weighted 

sum of multiple classifier outputs considering difficult-

to-learn training data. A Viola-Jones cascaded classifi-

er is a coarse-to-fine and one way approach in which 

most of false positives are eliminated in earlier stages 

while keeping true positives. On the other hand, our 

approach is a two-stage classifier that can decide which 

stage to use based on the confidence value. The first 

stage classifier can extract both true positives and true 

negatives when it is confident. The second stage classi-

fier is used only when the first stage classifier is not 

confident. The final decision is made by comparing the 

confidence values from the first and the second stages. 

In this point of view, the proposed algorithm is differ-

ent from the other approaches. 

 

3.2. TopN-Exemplar-SVM 
 

For the second stage classification, we propose a 

topN-exemplar-SVM, which is based on SVM-kNN [3] 

and exemplar-SVM [17]. Namely, top-N candidate 

classes are extracted and exemplar-SVMs are trained 

only for them. 

The basic idea of the SVM-kNN [3] is to limit the 

training data for the second stage classifier by the k 

nearest neighbor search. However, simply extracting 

the top-N classes in the first stage SVM and retraining 

another SVM only with them in the second stage does 

not work well. Because the top-N classes are the N 

most confusing (i.e., probable) classes, the classifier in 

the second stage would yield wrong answers again as 

long as the same type of classifier is used. However, we 

borrow the idea of limiting the candidate classes for 

refining the classification results. Note that we use the 

top-N classes though Ref. [3] used top-k images. 

The exemplar-SVM [17] is a method to train a sepa-

rate SVM classifier for every exemplar in the training 

set. Since each detector is quite specific to its exemplar, 

 
Figure 1. Percentage of the correct answers being in-

cluded in Top-N classes.  

 

 
Figure 2. Flowchart of the proposed algorithm. 
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intra-class variability of the training objects becomes 

less problematic. One of the significant issues of the 

exemplar-SVM is the processing cost. The number of 

classifiers to train is equal to that of the training data, 

which is computationally very expensive. Therefore, 

we propose to use it in the second stage classifier in 

conjunction with the SVM-kNN. 

The proposed TopN-exemplar-SVM combines the 

advantages of the two approaches. Liming the number 

of training samples by top-N drastically reduces the 

training/testing time for exemplar-SVM. In addition, 

the exemplar-SVM can focus only on more “probable” 

classes. On the other hand, from the SVM-kNN point 

of view, the classifier that can respond only to specific 

cases is ideal because it is difficult for conventional 

SVMs to correctly classify such probable but confusing 

data. 

The results given by the second stage classifier are 

employed only when the confidence values are larger 

than those in the first stage classifier. One might won-

der whether we can compare the confidence values 

from the classifiers with different sets of training data. 

However, it is a common approach in one-against-all 

for multi-class classification. The confidence value can 

be regarded as a relative value to those of support vec-

tors, which are always either +1/-1. 

The processing cost for the topN-exemplar-SVM is 

a few seconds per image. This is not a problem in prac-

tical usage because feature extraction and code assign-

ment are the bottleneck of the whole pipeline. 

 

4. Experimental Results 
 

In this section, experimental results are shown using 

three widely used datasets: Caltech-101 [1], Caltech-

256 [15], and PASCAL VOC2011 [19]. We employed 

the ScSPM [4] and LLCSPM [5] for feature representa-

tion. The reason for choosing [4][5] is that the source 

code is available on the authors' project site. So anyone 

can reproduce the results in [4][5] and those in this 

paper. In addition, we can guarantee that all the config-

urations other than the classifier are the same. The 

source code of this paper is also available on our pro-

ject site. The codebook sizes were 1,024 for Caltec-101, 

4,096 for Caltech-256, and 2,048 for VOC2011, re-

spectively. The training data were sampled randomly 

and the rest were used for testing. The accuracies of the 

original ScSPM/LLCSPM and our proposed method 

were calculated using the same training/test data. This 

procedure was repeated five times and the average ac-

curacies were calculated. 

Table 2 shows the performance improvements as a 

function of the number of training data per class. It is 

shown that the performance of the proposed algorithm 

is always better than the original ScSPM and LLCSPM. 

It is also observed that the accuracy is improved more 

when the number of training data is increased because 

the probability of a proper exemplar being included in 

the training set becomes larger. 

Fig. 3 demonstrates the performance improvement 

of ScSPM for the Caltech-101 dataset and its pro-

cessing time. When N is small, the probability for the 

correct class being included in the second stage training 

is smaller. The training/testing cost is also small. On 

the other hand, when N is large, more unrelated (nega-

tive) samples are included, resulting in lower accuracy 

and more computational cost, as well. We confirmed 

that the best N is 2-3 for ScSPM/LLCSPM regardless 

of the dataset. 

In Table 3, the performance of our topN-exemplar-

SVM is compared with other refinement methods 

[3][16][17]. The performances of SVM-kNN and ex-

emplar-SVM are worse than that of the original ScSPM. 

In addition, CCM does not contribute very much, either. 

As shown in Table 4, the accuracy of our proposed 

method is comparable to state-of-the-art image recogni-

Table 2. Classification accuracy improvement as a function of the number of training data per class: (a) Caltech-

101, (b) Caltech-256, (c) PASCAL VOC2011. N is set to 3. The performance of the original ScSPM and 

LLCSPM is obtained by executing the source code provided by the authors. 

(a) 

# of training data 30 60 90 

ScSPM 73.4 to 73.9 (+0.5) - - 

LLCSPM 69.8 to 70.3 (+0.5) - - 

(b) 

# of training data 30 60 90 

ScSPM 34.9 to 35.7 (+0.8) - - 

LLCSPM 35.7 to 36.0 (+0.3) 40.6 to 41.1 (+0.5) - 

(c) 

# of training data 30 60 90 

LLCSPM 30.0 to 30.1 (+0.1) 33.7 to 33.8 (+0.1) 35.1 to 35.3 (+0.2) 
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tion algorithms [4]-[9]. They are focused on feature 

representation or spatial pooling and they use conven-

tional SVMs in the classification stage. Therefore, our 

method can be incorporated into such algorithms. 

 

5. Conclusions 
 

In conventional multi-class object recognition, the 

class with the highest confidence was taken. Although 

this has been the best and the only choice, the classifi-

cation accuracy was low when the top confidence value 

was negative. In this paper, we have investigated the 

statistics on the confidence values in detail and demon-

strated that the classification accuracy can be improved 

by the two-stage classifier based on the confidence 

values. For the second stage classifier, we have devel-

oped a topN-exemplar SVM classifier. The experi-

mental results using three standard datasets demon-

strated that the proposed work can improve the object 

classification accuracy of state-of-the-art algorithms. 
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Figure 3. (left) classification performance, (right) pro-

cessing time for the second stage classification. ScSPM 

with Caltech-101 is used. 

 

Table 3. Comparison with SVM-kNN, CCM, and Ex-

emplar-SVM using ScSPM for Caltech-101. 

Algorithm Accuracy 

ScSPM [4] 73.2% 

Modified SVM-kNN [3], N=3 69.4% 

CCM [16] 72.1% 

Exemplar-SVM [17] 69.1% 

TopN-Exemplar-SVM (proposed) 73.9% 

 

Table 4. Classification accuracy comparison with re-

cent approaches using ScSPM for Caltech-101. 

Algorithm Accuracy 

ScSPM [4] 73.2% 

LLCSPM [5] 73.4% 

D-SP [6] 67.2% 

LC-KSVD2 [7] 73.6% 

RLDA [8] 73.7% 

Hie Sc [9] 74.0% 

Code Relation [10] 74.3% 

Proposed (using ScSPM) 73.9% 
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