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Abstract 
 

We describe an algorithm for dynamic texture 

synthesis of video sequences of frames exhibiting 

certain stationary properties over time, such as sea-

waves, whirlwind or moving crowds. The algorithm is 

based on taking into account the similarity among 

reference images in the video inter-frame coding. It 

allowed us to better express the time-varying 

relationship of the dynamic texture and to extend the 

algorithm described in [9]. 

 

 

1. Introduction 
 

Texture is generally considered a special area of the 

image, which has a certain degree of randomness and 

self-similarity. Each pixel in the texture can be 

expressed by the adjacent pixels in time or space. The 

traditional methods in video coding are not sufficient to 

eliminate the correlation between the pixels in the 

texture image because the large number of high-

frequency information, such as the block-based motion 

prediction and the Discrete Cosine Transform (DCT). 

For this problem, the method based on texture analysis 

and synthesis is proposed and gradually become one of 

the key technologies for video coding. 

Many proposals have been made on how the texture 

can be used for video and image coding. In [1], one 

approach is presented where the textures are classified 

by geologic structures. In [2], texture is expressed by a 

MRF model. Texture image is segmented by Gabor 

filters in [3]. In [4], [5] and [6], texture image is 

segmented using the statistical characterization. For 

these methods, images are classified into detail-relevant 

and detail-irrelevant texture areas, and the texture 

synthesis effects subject to the constraints of texture 

segmentation accuracy. Therefore, these can only be 

effective for some particular textures. 

Under the premise of preserving its advantages, 

texture synthesis can be further simplified by 

combining with the characteristic of video coding, so 

that, some complex operations such as the texture 

segmentation can be avoided [7] [8]. Specially, in order 

to improve the efficiency of inter prediction, Stojanovic 

et al. innovatively presented an algorithm for dynamic 

texture extrapolation [10], which is based on the model 

of dynamic texture proposed by Doretto et al. [9]. 

Moreover, in the following two years, two new 

approaches based on the model for video coding were 

proposed by Stojanovic [11], [12]. 

In this paper we propose to use an improved 

dynamic texture synthesis algorithm, in order to 

synthesize dynamic texture image that can be more in 

line with the characteristics of the video coding. Our 

algorithm can be viewed as an extension of Doretto¶s 

representational algorithm [9], where tools from pattern 

recognition are used to learn dynamic texture models. 

 

2. Background 
 

The definition of dynamic texture model was 

introduced in [9] for the purpose of dynamic texture 

synthesis for virtual reference frame. For a sequence 
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The initial condition is 
0(0) ,x x  and in the 

simplest case, we take the filters as a dimensionality  

reduction step, and seek for a decomposition of the 

image in the simple form 
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where 
1 2{ , , } m n

n
C RT T T u �"  and { }

i
T  can be an 

orthonormal basis of 
2.L  Further, let 

n

means
y R�  be 

a temporal mean of the sequence. So the sequence 

( )y t  can then be inferred as an autoregressive moving 

average (ARMA-process): 

        

                 (2) 

 

The equation 2 shows the Doretto¶s solution for the 

dynamic texture synthesis, the synthesis frame ( )y t  is 

consisted of the temporal mean
means

y and the bivariate 

stochastic process driven by the noise ( )v t  and ( ).w t  

The model needs a large number of training sequences 

and shows the average movement trend of the reference 

pictures as a whole in time. Specially, when the length 

of the training sequence is short, the synthesis frame is 

only the repetition of the training sequence. So, this 

model is not suitable for the inter prediction, which 

using only few training pictures.  

In [10], Stojanovic simplified the dynamic texture 

model as the form: 

 

          (3) 

 

According to the equation 3, the noise v  and w  is 

omitted. In addition, 5n W   in this model, so the 

extrapolated frame is the repetition of the training 

sequence and 
means

y  is zero. Under the modified 

model, Stojanovic presented one novel dynamic texture 

prediction algorithm (DTP) that combined the H.264 

video coding system with dynamic texture by simply 

replaced the oldest frame in the reference picture buffer 

with the extrapolated frame. However, as we have 

shown in [13], the DTP algorithm can only be effective 

for some particular sequences. In the signal processing 

and system theory the image sequences can be thought 

of as the consequence of a bivariate stochastic process 

driven by the noise. Strictly speaking, if the noise 

process v  and w  are omitted, the solution of the 

dynamic texture model is incorrect. 

Further, a new dynamic texture synthesis algorithm 

(DTS) is given by Stojanovic in [12], compared to 

DTP, the main difference is the number of training 

frames is higher. Namely, DTS is based on the model: 
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The temporal mean 
means

y  is not zero in the equation 4 

because of the large number of training frames. So, 

besides the lack of noise process, another drawback of 

the DTS algorithm is not suitable to provide a real-time 

implementation for the decoder. 

 

3. Method description 
 

Through the above analysis, there exist two major 

unfavorable factors for Doretto¶s dynamic texture 

model to be integrated into the H.264 encoding and 

decoding system. Firstly, the noise process is varying in 

time, which would make the synthesized frames 

numerical inconsistent at the encoder and decoder. So, 

the noise v  and w  are omitted in DTP and DTS. 

Secondly, the model needs a large number of training 

frames, which would make the synthesized frames only 

have good effects on the linear motion, but have bad 

effects on the video sequences with non-linear motion 

and illumination changes. 

In the case, we would extend the model and give an 

improved solution. The form of our model is 
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where noise 
'

v  and 
'

w  are described by the pseudo-

random number, and 
pow means

y � is the temporal and 

weighted mean of the training frames. Parameters  a , b  

in the equation 6 are the weighted factors. E is the unit 

matrix. Compared with the equation 2, 3 and 4, the 

improved dynamic texture synthesis (IDTS) has three 

main differences: 

First, we use the pseudo-random number to describe 

the noise 
'

v  and 
'

w  in our Matlab and C++ code 

implementations, which could ensure the numerical 

consistency of our algorithm and the same synthesis 

effect at the encoder and decoder. Namely, the noise 

process is retained in our algorithm by using a new way. 

Second, each of the training frames is given some 

corresponding weighted factors, which will be used to 
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reflect the similarity between current frame and its 

reference frames. Therefore, we need not to limit the 

number of training frames, just adjust the factors. 

The last and most important, our model can also be 

adapted to the non-linear motion and illumination 

changes by using the suitable weighted factors. 

In the equation 2 and 4, 
means

y  requires a large 

number of training frames and is defined as: 

1

1
( )

t

means

i

y y i
t  

 ¦                                    (7) 

We could find it is the main difficult for the dynamic 

texture model to be used in a video coding system, 

since  a general requirement in video coding is to use 

only few reference frames. In addition, for the non-

linear motion, there is no need to get the temporal 

mean, but want to get the movement status of recent 

one or two frames. 

Table 1. 

Improved dynamic texture synthesis algorithm 

Algorithm  IDTS(
n

n
Y W� ) 

Input:  Decoded picture buffer matrix 
n

n
Y W�  

Output:  The value of 
1n

Y �  

  1:  if 2n W! t  then 

  2:    
_ (1)

pow means
Y mpow2 ( ( ),1 )a Y n nW� � �  

  3:    1k m  

  4:    for i m  ( n kW� � ) to n  

  5:      1k km �  

  6:      
_ ( )
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Y k mpow2 ( ( ), 1 )a Y i i n b E� � � � �  

  7:    end for 
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  9:    C m  leftk ( )U  

 10:    
n

n
X W� m  upperk ( )T

S V�  

11:    
1n

n
A X W

�
�m �pinv ( 1)( )n

n
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12:    
1

( 1)

n n

n n
Vhat X A XW W

�
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13:    , , ( )T
Uv Sv Vv SVD Vhatm  

14:    
( 2) ( 2) 1n n

n n
B Uv Sv kW W� � � �m � �  

15:    
1n n

X A X B� m � � u randn ( ( ,2),1)size B  

16:    
1 1n n

Y C X� �m � � randn ( ( ,1),1)size C  

17:  end if 

18:  return  
1n

Y �  

For the 
pow means

y �  in our improved model, the 

parameters  a , b show that the similarity between 

current frame and the reference images in linear motion 

scene, but the formula 1 2 (1 1)t
M Md d �  represents 

the similarity in the non-linear motion. Namely, the 

equation 6 includes two constraints ( 2t t ): 

 ( ) ( 1)y t a y t b E � � � �                                 (8) 

and 
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Especially, when   1a  , 0b   and 3t � , we can see 

that the value of 
means

y  is equal to the value of  

pow means
y � . So, to some extent, 

pow means
y �  can be 

seen as the important compensation and improvement 

for 
means

y  when only allows a very limited number of 

reference frames for the video coding. 

It should be noted that the parameters  a , b and the 

formula 1 2M
are not used to represent the movement 

properties or the motion type, but to simulate the 

similarity. It is based on a reasonable assumption, for 

any reference frame as a whole, the farther away from 

the current frame, the lower in the similarity. 

Like DTP or DTS, the IDTS algorithm also using a 

higher order SVD for decomposition and the precise 

description is given in Table 1. In Detail, pow2 ( f , p ) 

computes 2 (1 2 )p p
f f

�u  u  for corresponding 

elements of f  and p , leftk ( A ) is the operation of 

taking left k  columns of the matrix A , upperk ( A ) 

is the operation of taking the upper k  rows of A , 

pinv( A ) computes the Moore-Penrose pseudoinverse 

of A , randn(m, n) is used to generate an m-by-n 

matrix containing pseudorandom values drawn from 

the standard normal distribution. 
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Table 2. Results for JM18.3 with DTP, DTS and our IDTS algorithm compared to original JM18.3 

Sequences 

DTP DTS IDTS 

¸PSNR 

(dB) 

¸Rate 

(%) 

¸PSNR 

(dB) 

¸Rate 

(%) 

¸PSNR 

(dB) 

¸Rate 

(%) 
a b t 

Container 0.39 - 7.93 0.45 - 8.90 0.48 - 9.02 1.21 0.1 7 

Coastguard - 0.04 1.00 0.05 - 0.16 0.05 - 0.19 1.02 0.3 6 

Basketballpass - 0.01 0.25 0.04 - 1.07 0.06 - 1.36 1.16 0.1 5 

Blowingbubbles - 0.04 0.86 0.01 - 0.13 0.03 - 0.27 1.72 0.6 11 

Racehorses - 0.02 0.39 0.02 - 0.25 0.08 - 0.93 1.30 0.0 5 

 

4. Experiment results 
 

The presented algorithm is integrated into the 

JM18.3 reference software [14]. For comparison, 

testing conditions and coding parameters for coding 

efficiency based on the description in [12] are used. 

The Container and Coastguard sequences are QCIF 

(176×144) and the others are 416×240, but only the 

Container sequence includes lots of linear motion 

textures. 

Table 2 shows that average BDPSNR and BD-

BitRate of DTP, DTS and our IDTS algorithm 

compared to the JM18.3. The experimental results 

show that the IDTS algorithm can achieve better 

performance than the former. The DTP algorithm is 

only effective for the Container sequence. The DTS 

algorithm is effective for all sequences by using a large 

number of reference frames. On the whole, the 

proposed IDTS algorithm can obtain better results only 

by using a few reference frames and can be suitable for 

a real-time implementation for the decoder. The 

optimal weighted factors  a , b  and the number of 

reference frames t  are got by a lot of testing. 
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