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Abstract

Microarrays are massively parallel biosensors that
can simultaneously detect and quantify a large num-
ber of different genomic particles. A DNA microarray
is a nucleic acid-based microarray that contains probe
spots testing a multitude of targets in one experiment.
Ideas from compressive sensing have been utilized in
different ways in the analysis of DNA microarrays. One
of the proposed methods is compressed microarrays,
where each spot contains copies of several probes and
the total number of spots is lower, resulting in signif-
icantly reduced costs due to cheaper array manufac-
turing. In this paper, we perform compressed microar-
ray experiments with real aCGH data and demonstrate
the accuracy of various recovery methods. Our exper-
imental results suggest that the measurements that can
be captured by compressed microarrays can be recov-
ered accurately using the proposed norm-minimization
methods.

1 Introduction

Sensing in DNA microarrays is based on the process
of hybridization in which DNA strands complementary
to each other bind and create structures in lower en-
ergy states [8, 9, 10, 4, 3, 2, 7, 5]. The surface of a
DNA microarray consists of an array of spots, where
each spot contains a large number of identical single-
stranded DNA sequences, called the probes. Probes are
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designed to capture copies of a single DNA molecule
of interest called the target. Microarrays determine the
gene expression levels, which essentially determine the
process of transcription of DNA information into mes-
senger RNA. The transcribed information is then trans-
lated to proteins that perform most of the functions in
the cells. Measuring gene expression levels may al-
low to extract critical information about the function-
ality of the cells, study diseases and the effects of drugs
on them. Usually, DNA microarrays are used to com-
pare the gene expression levels of a given gene sample
with a reference gene sample.

Typically, only a fraction of the total number of
genes is differentially expressed. Shmulevic et al. [11]
proposed composite microarrays, in which each spot
consists of several probes. A signal measured at each
spot is potentially a combination of many targets. Using
a composite microarray one could acquire multiple data
points for each of the targets being tested. However,
the signal recovery does not exploit the inherent sparse-
ness of the signal. Parvaresh et al. [6] borrowed ideas
from compressive sampling and proposed compressed
microarrays. Compressive sampling is closely related
to the problem of solving the following undetermined
system of linear equations with a sparseness constraint:

minimize ||x||1
subject to Ax = y

(1)

where A is a binary sparse matrix that represents
the probe distribution in the microarray, x is the raw
signal that we are trying to estimate and y is the
measured signal. In this paper we use the notation
||x||p to denote the p-th norm of x, i.e. ||x||p =

(x1
p + x2

p + . . . + xn
p)1/p.

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-1-6 ©2012 IAPR 3144



Another method to exploit the inherent sparseness is
to apply a block-sparse signal reconstruction method as
proposed by Stojnic et al. [12]. A signal x (for example,
a series of DNA copy numbers) is d-block-sparse if it
consists of n blocks, each of size d where each block is
either a zero or a non-zero vector. A convex relaxation
for the recovery of x

minimize ‖X1‖2 + ‖X2‖2 + . . . + ‖Xn‖2

subject to Ax = y
(2)

was proposed, where Xi =
(x(i−1)d+1, x(i−1)d+2, . . . , xid) for i = 1, 2, . . . , n.

Compressed sensing with norm-minimization recov-
ery methods has been investigated in several stud-
ies [6, 12]. However, to the best of our knowledge, its
performance was not demonstrated on real microarray
data. In this paper, we apply various recovery tech-
niques on real genomic data. We compare the accuracy
of the methods that use block-sparse recovery, inspired
by the fact that alterations typically affect contiguous
segments of a genome [6], with those that use L1 opti-
mization recovery which takes advantage of the inher-
ent sparseness of the aCGH data.

2 Related Work

DNA microarrays are used to compare the gene ex-
pression levels of a test sample with that of a reference
sample. In practice, only a fraction of the total number
of genes is differentially expressed, that is the difference
of the signals produced by the two samples is sparse.
Linear combinations of the signal components may be
acquired by the composite probe spots that are com-
prised of a mixture of several probe sequences. How-
ever, the sparseness constraint suggests possible recov-
ery of the signal from potentially far fewer probe spots
than the total number of probe sequences.

A compressed microarray with m spots containing
probes designed to quantify n different targets can be
modelled as

y = Ax + w + v (3)

where x denotes the n-dimensional data vector repre-
senting the gene expression levels, y denotes the m-
dimensional measurement, w is the shot noise, v is
the m-dimensional zero-mean i.i.d. Gaussian additive
noise due to instrumentation and other biochemistry-
independent noise sources, and A is an m × n bi-
nary matrix containing information about probe mixing.
Each row in A corresponds to a probe spot. The compo-
sition of the i-th probe is determined by the positions of
ones in the i-th row of A. Aij is non-zero if and only if
the j-th target can bind to some probes in the i-th spot.

A is limited to binary 1/0 for the sake of manufacturing
simplicity.

In a two color microarray experiment, we compare
two samples characterized by data vectors x1 and x2,
and we are interested in finding differentially expressed
genes. Ideally, this means x = x1 − x2, y = y1 − y2,
v = v1−v2. We can write, y = Ax+w+v, where x is
sparse, i.e. it has a small number of entries that are non-
zero (or significantly larger than zero). This means that
one may be able to recover x using L1 minimization
minx,Ax=y ||x||1.

The recovery accuracy of this method is supported
by the study of sparse signal recovery using sparse ma-
trices by Berinde and Indyk [1]. They discuss recover-
ing a high dimensional vector x from its lower dimen-
sional measurement Ax, where A is binary and sparse,
i.e. it has only a fixed small number of ones in each
column and all other entries are zero. It is shown that
such matrices satisfy a weaker form of the RIP-p prop-
erty. Use of these matrices is advantageous because it
fits well in many applications such as ours. Further-
more, it has an efficient update time, which is equal to
the sparsity parameter d. Another advantage is that such
matrices can be constructed using expander graphs [1].
Berinde and Indyk focused on the recovery method that
computes a solution x to the linear system given in (1)
and proved that the recovery can be very accurate.

Parvaresh et al. [6] proposed the application of this
method to the recovery of compressed DNA signals af-
ter compressed sensing. They also proposed the inclu-
sion of a differentiation operator to reduce the number
of spikes in the recovered signal. The purpose of this
operator is to generate a piecewise constant signal by
minimizing the number of jumps. This approach can be
formulated as follows:

minimize ‖x‖1 + γ ‖Dx‖1

subject to Ax = y
(4)

where A is a binary sparse matrix that represents the
probe distribution in the microarray and D is the differ-
entiation operator given by

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 . . .
0 1 −1 0 0 . . .
0 0 1 −1 0 . . .

. . . . .

. . . . .
0 0 . . . 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

Stojnic et al. [12] investigated the application of block-
sparse signal reconstruction methods to DNA microar-
rays. A signal of dimension N consists of n blocks of
size d = N/n. Such a signal is k-block-sparse if only
k blocks of the signal out of n are nonzero. Instead of
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L1 norm relaxation, they considered Lp/L1 relaxation,
which solves the convex problem given in (2). Their
main result is the following theorem:

Theorem 1 Let A be an md × nd matrix. Further, let
A be an instance of the random Gaussian ensemble.
Assume that ε is a small positive number, i.e. 0 < ε <<
1, d = Ω(log(1/ε)/ε), α > 1− 1/d, β = 1/2−O(ε).
Also, assume that n tends to infinity, m = αn, and the
block-sparsity of x is smaller than βn. Then with over-
whelming probability, any d-block-sparse signal x can
be reconstructed efficiently from y = Ax by solving the
optimization problem given in (2).

Stojnic et al. proposed the application of this method
to DNA microarrays because over/under expressions of
genes usually occur in contiguous segments.

3 Recovery of Genomic Data

All of the recovery methods described above can be
represented by the following general expression:

minimize ‖X1‖p + ‖X2‖p + . . . + ‖Xn‖p + γ ‖Dx‖1

subject to Ax = y
(5)

For genomic data recovery using (5) with p = 2
minimization appears to be promising. This recovery
method tries to maximize the number of zero elements
because only a small fraction of the total number of
genes is differentially expressed. It also tries to provide
a solution in which non-zero elements occur in blocks,
unlike the solutions given by (1) with p = 1 that usu-
ally contain spikes which do not occur in real aCGH
data. We experimented with various p and γ values in
(5) and demonstrated their performance for the detec-
tion of over and under expressions of genes. From a
data set that contains about 10, 000 signals, we selected
a subset of approximately 1, 000 for our experiments.

4 Experimental Results and Discussion

We represented the probe mixing of the microarray
using using a binary sparse matrix Am×n, which is
generated randomly using the method described in [1].
More specifically, for each column, we generated δ ran-
dom integers between 1 and m, and assigned 1s to the
corresponding rows. The resulting matrix would be
an adjacency matrix of an expander graph of degree δ
with a high probability and therefore would satisfy the
RIP-p property. In the experiments we set δ = m/16,
m = 400, and n = 1, 000, so that the corresponding
microarray would have 400 spots and would be able to

detect 1, 000 unique targets. Each spot would have ex-
actly 25 probes. These values were chosen to make the
experiments realistic.

We obtained the raw signal x from the aCGH tu-
mor tissue subcategory of the Stanford Microarray
Database1. We then calculated the measurement signal
y = Ax and determined the recovered signal, x′ using
various p and γ values. Finally, we analyzed how close
the recovered signal x′ was to the original signal x.

It is difficult to perform analysis on the raw data be-
cause of noise. It can be difficult to identify aberrant
regions by examining the raw data. It is much easier
to do so when we analyze the smoothed data. That is
why, when we compare the performance of a particular
recovery method, we analyze the recovered data and the
raw data after smoothing both of them.

Fig. 1 demonstrates the performance of the methods
on four data sets. The y-axis corresponds to the norm
of difference given by ||smooth(x) − smooth(x′)||2,
where smooth(x) and smooth(x′) denote the vectors af-
ter smoothing the signals x and x′, respectively.
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from frozen tissue) (Male)
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Figure 1. γ vs. norm of difference

In our experiments, when γ = 0, block-sparse re-
covery with p = 2 provided consistently superior re-
sults. Since L1 minimization recovery (p = 1) tries
to sparsify the recovered vector, its results would lead
to the conclusion that most genes are not differentially
expressed except a very small subset, even though this
is not that case in the original signal. This recovery
method is not suitable for a signal which has a spar-
sity as high as the aCGH data. (5) with p = 2, on the

1http://smd.stanford.edu/
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other hand, can handle higher sparsity values [12]. It
tries to find a solution which is block-sparse by trying
to maximize the number of non-zero blocks. We in-
cluded a penalty term (γ > 1) to the differentiation ma-
trix to penalize jumps. This helped us finding solutions
with a minimal number of spikes in the data. However,
if an excessively large penalty value is used, this ap-
proach provides solutions that are approximately piece-
wise, but with too many neighborhoods that are over- or
under-expressed, i.e. the recovered signal becomes too
serrated. However, for a small enough γ, e.g. γ = 5,
we consistently achieved near-optimal recovery. Fig.
2 demonstrates that, after smoothing, the signal recov-
ered by (5) with p = 1, γ = 5, maintains most of the
peaks and valleys with approximately the same expres-
sion levels as those in the smoothed raw signal.
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Figure 2. Recovery performance of (5)
with p = 1, γ = 5 on a subset of data
aCGH:STT491B-DFSP (DNA from Trizol)
(Female)

5 Conclusions

In this paper, we investigated the recovery of mi-
croarray data from the measurement signals of com-
pressed microarrays using methods that take advantage
of the inherent sparseness of the raw microarray data.
We demonstrated that the method given in (5) with
p = 2, γ = 0 yields consistently near-optimal results.
The parameter combination p = 1, γ ≈ 5 performs sim-
ilarly well. The latter configuration is in fact a better
choice because with p = 2 we need to define another
variable, namely the block size. If the block size is too
small, our result would be almost as bad as the one we
obtain with p = 1, γ = 0. On the other hand, if it
is too big, then it decreases our resolution by a fac-
tor of the block size when we try to analyze whether

a gene is over- or under-expressed. If in a particular
block, there are genes with irregular expression levels,
i.e. some genes are over/under-expressed and some are
not, then it is very unlikely that the block-sparse recov-
ery method will recover the expression levels of the in-
dividual genes.

In this study, we have not taken into account the
practical limitations that would result from biological
and measurement noise. In future work, we hence plan
to factor in those limitations.
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