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Abstract

To characterize the brain changes associated with aging,

we detect brain cortex variability through a spherical har-

monic analysis that represents a 3D surface supported by

the unit sphere through a linear combination of special basis

functions, called spherical harmonics (SHs). The proposed

3D shape analysis is carried out in four steps: (i) 3D Delau-

nay triangulation to construct a 3D mesh model of the brain

cortex surface; (ii) mapping this model to the unit sphere; (iii)

computing the SHs for the surface; and (iv) calculating the

area under the error reconstruction curve for the SHs to delin-

eate the brain cortex. We describe the brain shape complexity

with a new shape index, the estimated area under the error

reconstruction curve for the SHs. The initial experiments on

187 male subjects (age range, 4-22 years) and the compari-

son results with the cortex volumetric index suggest that our

shape index is a promising supplement to current metrics that

characterize age-related brain changes.

1 Introduction

Characterizing brain changes associated with aging is an

important research area in modern neuroscience. It helps to

recognize pathological brain development [1, 2] and to ad-

dress several arising questions associated with brain develop-

ment in controls [3]. Recent advances in data acquisition sys-

tems have opened the way for characterizing age associated

brain changes. Magnetic resonance imaging (MRI) has re-

vealed quantitative age-related changes through postmortem

and serial in-vivo scanning. Courchesne et al. [3] reported

changes in the whole brain volume and in the grey matter and

white matter brain structures in a group of 116 volunteers,.

Analysis of cortical changes have also been investigated.

Volumetric approaches reported different aging-associated

changes in adults, particularly in the volume of the whole

frontal cortex [4] and the lateral prefrontal cortex [5]. Salat et

al. [6] estimated the cortical thickness as the distance between

the gray/white boundary and the outer cortical surface, result-

ing in a continuous estimate across the cortical mantle. Global
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cortical thinning was apparent by middle age in a group of 106

non–demented participants (age range, 18–93) [6]. In addition

to cortical thickness, Magnotta et al. [1] used a curvature in-

dex, measuring the curvature of the gyri and the sulci, to con-

clude that the aging process affects gyrification, with the brain

appearing more ‘atrophic’ with increasing ages in a sample of

148 controls (age range, 18–82).

Instead of voxel–based approaches, which are sensitive to

errors from spatial smoothing and structures segmentation, we

apply our recently developed SH analysis methodology [2, 7]

to characterize the whole 3D shape changes associated with

aging inside an individual brain cortex. The SH analysis has

been successfully applied in a host of brain applications [8, 9].

Our SH methodology has shown superior competing results

in diagnosing malignant lung nodules [7] and analyzing the

dyslexic brain cortex [2]. In this paper, the 3D shape of an

individual brain is characterized based on a new metric that

measures the area under the error reconstruction curve of the

SH, which is required to approximate the individual brain cor-

tex. Our results indicate that this newly developed metric has

revealed significant differences associated with aging and can

be used as a supplement to the current existing metrics.

2 3D Shape Analysis Framework

The proposed analysis begins with segmented brain cortex

images from pre–segmented MRI which were provided to our

research group by the National Institute of Mental Health Pe-

diatric Brain Imaging project. A 3D mesh model of the cortex

surface is mapped to a unit sphere and approximated using a

linear combination of SHs. The area under the error recon-

struction curve of the SHs yields a desired approximation ac-

curacy that can be used as a new shape index to describe the

complexity of the brain’s shape.

2.1 Spherical harmonics shape analysis

Spectral SH analysis [10] considers 3D surface data as a

linear combination of specific basis functions. In our case, the

surface of the segmented brain cortex is approximated first by

a triangulated 3D mesh (see Fig. 1) built with an algorithm

by Fang and Boas [11]. Secondly, the brain cortex surface

for each subject is mapped for the SH decomposition to a unit
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sphere using our recently developed mapping approach, called

“Attraction-Repulsion,” see Fig. 2. For more details about the

Attraction-Repulsion algorithm, please see [2].

Figure 1. Generation of a 3D mesh for the

brain cortex surface from a stack of succes-

sive segmented 2D T2–MR slices. Note that the

colors indicate the vertical depth of the mesh

points and are used for visualization purposes.

(a) (b)

Figure 2. Brain cortex mesh (a) and the

Attraction–Repulsion mapping to unit sphere

(b).

The original brain cortex, mapped to the unit sphere

with the proposed Attraction–Repulsion algorithm, is approx-

imated by a linear combination of SHs. The lower–order har-

monics are sufficient to represent more generic information

while the finer details require higher–order harmonics. The

SHs are generated by solving an isotropic heat equation for

the cortex surface on the unit sphere. Let S : M → U de-

note the mapping of a cortical mesh M to the unit sphere U.

Each node P = (x, y, z) ∈ M mapped to the spherical posi-

tion u = S(P) is represented by the spherical coordinates

u = (sin θ cos ϕ, sin θ sin ϕ, cos θ) where θ ∈ [0, π] and

ϕ ∈ [0, 2π) are the polar and azimuth angles, respectively.

The SH Yαβ of degree α and order β is defined as [12]:

Yαβ =







cαβG
|β|
α cos θ sin(|β|ϕ) −α ≤ β ≤ −1

cαβ√
2

G
|β|
α cos θ β = 0
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and G
|β|
α is the associated

Legendre polynomial of degree α and order β. For the fixed

α, the polynomials Gβ
α are orthogonal over the range [−1, 1].

As shown in [12], the Legendre polynomials are effective in

calculating SHs, and this is the main motivation behind their

use in this work.

Finally, the brain cortex is reconstructed from the SHs of

Eq. (1). For SHs expansion, the standard least–square fitting

does not accurately model the 3D shape of the brain cortex

and can miss some of the shape details that discriminate be-

tween child and adult brains. To circumvent this problem, we

used the iterative residual fitting by Shen et al. [13] that accu-

rately approximates 3D gyrifications of the brain cortex. As

demonstrated in Fig. 3, the brain cortex gyrifications increase

with age and thus the model accuracy (Fig. 4) does not sig-

nificantly change for the subject at 6–years old, from 30 to 60

SHs, while it continues to increase at 18 years of age.

(a) (b) (c)

(d)

Figure 3. Original brain cortex mesh for one

enrolled subject at ages 6 (a), 12 (b), and 18

(c) years, and an illustrative schematic for the

proposed new shape index.

2.2 Quantitative brain cortex shape analysis

Our main hypothesis is that the brain cortex gyrifications

will increase with age as demonstrated in Fig. 3(a),(b), and

(c). As age increases, more SHs must be used for an accu-

rate approximation of the brain cortex gyrifications, and thus

a significant increase in the area under the SHs error recon-

struction curve is obtained (see Fig. 3(d)). Note that the re-

construction error is defined as the mean Euclidian distance

between the original cortex surface and its reconstructed ap-

proximation using the SHs.

3 Experimental Results

The proposed approach was tested on in vivo data col-

lected from 187 healthy control male subjects, aged 4–22

years. These healthy control subjects were recruited from the

community and underwent physical and neurological exams,

clinical interviews, family history assessments, and extensive
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Age 1 SH 10 SHs 20 SHs 30 SHs 40 SHs 60 SHs

6 years

12 years

18 years

Figure 4. Approximation of the 3D brain cortex shape for the subject in Fig. 3 at ages 6, 12, and 18 years.

Figure 5. Mean area under the error recon-

struction curve of SHs for all participants (age,

4–22); the curve is approximated using spline

fitting.

neuropsychological batteries [14]. Participants were asked to

return for follow–up longitudinal testing and scans at approx-

imately 2–year intervals. All images were acquired on the

same General Electric 1.5 Tesla Signa Scanner located at the

NIH Clinical Center. A three–dimensional spoiled gradient

recalled echo, in the steady state sequence, was used to ac-

quire 124 contiguous 1.5–mm thick slices in the axial plane.

To characterize the changes that occur in the shape of the

brain with aging, we compute the area under the reconstruc-

tion error curve of the SHs for all the scans for all participants.

The mean area under the error reconstruction curve is fitted

using a spline as shown in Fig. 5 (the area under the curve is

calculated using the trapezoidal approximation). As demon-

strated in Fig. 5, the area increases as the participant age in-

creases. This is due to the fact that as the child grows, her

brain develops more gyrifications and becomes more complex

(similar findings have been reported [1]), and thus requires

more SHs to approximate the shape within a given accuracy

(see Fig. 4).

In order to investigate how aging affects the shape of the

brain within certain age periods, we divided the data into 3

groups: group 1 (middle childhood, ages 4-9 years, mean age

6 years), group 2 (early and middle adolescent, ages 10-15

years, mean age 12 years), and group 3 (late adolescence and

early adulthood, ages 16-22, mean age 18 years). Then we

calculate error reconstruction curves of the SHs for each of

the three groups. As expected, a more gradual convergence of

the SH reconstruction curve is reported as age increases (see

Fig. 6(a)). This indicates that the area under the reconstruction

error curve provides a potential metric to characterize brain

shape changes associated with aging. In this regard, the box

plot analysis (Fig. 6(b)) shows a monotonic increment in the

mean area under the reconstruction error curve between the

three groups as age increases. In addition, Table 1 shows that

this increment represents a significant difference, as evidenced

by the P -values of the unpaired t-test performed between each

pair of the three groups with respect to the area under the error

reconstruction curves of the SHs (note that a P -value less than

0.05 represents a significant difference). Conversely, the cor-

tex volumetric index, estimated as the number of segmented

cortex voxels multiplied by the voxel size, failed to discrimi-

nate between the first and the second groups (Table 2). These

results highlight the high efficiency of the proposed shape in-

dex to detect aging changes.

(a) (b)

Figure 6. (a) Average error reconstruction

curves for three groups (mean ages 6, 12 and

18), and (b) the box plot for areas under the

error reconstruction curves for the groups.

4 Conclusions

In total, these preliminary results show that the area under

the SH reconstruction error curve is an efficient metric that can
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Table 1. Statistical comparative analysis for

our cortex shape index for three groups, mean

ages 6, 12 and 18 years.

Our cortex shape index

Group 1 Group 2 Group 3

(Age 6) (Age 12) (Age 18)

Mean 92.80 98.84 109.66

St. dev. 12.07 12.49 16.69

Group 1 and 2 2 and 3 1 and 3

P-value < 10
−4

< 10
−4

< 10
−4

Table 2. Statistical comparative analysis for

the cortex volumetric index (mm3) for the

three groups.

Cortex volumetric index

Group 1 Group 2 Group 3

(Age 6) (Age 12) (Age 18)

Mean 1,479,601 1,474,096 1,423,523

St. dev. 41,045 44,219 1,36,421

Group 1 and 2 2 and 3 1 and 3

P-value 0.2817 < 10
−4

< 10
−4

characterize the brain changes associated with aging. Our pro-

posal substantially differs from known techniques that exploit

only volumetric descriptions of different brain structures and

thus are in principle more sensitive to the selection of age and

segmentation errors. In contrast, we derive a quantitative met-

ric (the area under the SH reconstruction error curve) from the

whole 3D cortex shape. Our experiments demonstrate that the

differences in the proposed general geometric feature of cor-

tex gyrifications is statistically significant for the three groups

of different ages [middle childhood (4-9), early and middle

adolescence (10-15), and late adolescence and early adulthood

(16-22)], whereas the traditional cortex volumetric index fails

to differentiate between the first and second former groups.

In the future, we will use the newly developed shape index to

compare between male and female subjects.
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