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Abstract

We use video metadata to perform activity detec-
tion from videos in the wild, particularly the TRECVID
dataset. Unlike previous activity datasets (KTH, Weiz-
mann, UCF sports, etc.), this test set is assembled from
videos captured with a wide range of cameras, result-
ing in videos with different frame rates, audio/video bi-
trates, and resolutions. Because these measures corre-
late with the quality of the camera, and because differ-
ent camera hardware may be used to capture different
events (e.g., people likely bring nicer cameras to wed-
dings than on fishing trips), we expect that usable corre-
lations exist between metadata and events. Using SVM-
based classification of a feature vector of metadata fea-
tures, we demonstrate that such correlations do exist.
While the performance of this method is worse than tra-
ditional visual features, we demonstrate that they com-
pliment such approaches using score fusion.

1. Introduction

Activity recognition is a topic of much recent inter-
est in computer vision, and has a number of parallels
with previous work in object or scene recognition. In
general, both object and activity recognition use visual
cues, from the low level (texture, motion, etc.) to high
level semantics (parts models, people detection, etc.),
which are extracted from the video/image pixels. While
these cues are a natural way to address visual recog-
nition, as they comport with our understanding of the
human visual system, there are additional cues to visual
recognition that compliment visual features.

In this paper, we describe the use of metadata for
activity recognition of videos in the wild. The meta-
data describe the video - its resolution, length, etc. -
in ways that one can use to infer what’s depicted in
therein. The length of a video clip, for instance, may
be proportional to the complexity of the activity that it
documents. Moreover, people may use a certain cam-
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Figure 1. Example frames. Top row shows
wide intra-class variation, with different
clips labeled ‘attempting a board trick’:
(a) skateboard, (b) snowboard (c) boogie
board. Bottom row shows inter-class vari-
ation, with examples of ‘feeding an ani-
mal’, ‘landing a fish’, and ‘woodworking’.

era settings - or even a different camera entirely - when
capturing video of a certain event. As an example, wed-
dings are often filmed by professional videographers
using relatively expensive equipment, whereas recre-
ational events like fishing may be captured using lower
quality devices such as cell phone cameras. We show
that such relationships can help detect events in videos
in the wild, and that such evidence is complementary to
detection based on traditional visual features.

Our experiments are based on event detection on an
archive of more than 300 hours (several thousand clips)
of video collected and annotated for the Multimedia
Event Detection (MED) task of TRECVID2011 [10]1.
The videos are uncontrolled with respect to camera mo-
tion, background clutter and human editing. As shown
in Fig. 1, the event categories exhibit both wide intra-
class variation (e.g. multiple semantic subclasses of at-
tempting a board trick), broad inter-class variation, and

1http://www.nist.gov/itl/iad/mig/med11.cfm
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rich temporal structure (e.g. changing a vehicle tire)
which cannot be estimated from a single frame.

2. Related Work

The most related work to ours is the work by Boutell
and Luo [1], who use EXIF metadata from still images
to perform scene classification, particularly indoor-
outdoor and sunset classification. Their work exploits
relationships between the scene categories and meta-
data which are mechanical in nature, e.g. a camera’s
auto-exposure routine automatically selects a longer ex-
posure time when capturing an image indoors, where
lighting is generally limited. The EXIF metadata is gen-
erally discrete, e.g. ‘flash fired’ is a boolean, whereas
our metadata are continuously-valued (see Sec. 4). The
relationships we exploit are not artifacts of an auto-
mated system, as we are not aware of video cameras that
select capture settings based on measurements of the
scene. Instead, the human videographer sets our meta-
data, perhaps implicitly, when purchasing a particular
device or manipulating its settings. In this sense, our
metadata cues are likely weaker. Moreover, the event
distinctions that we seek - say, differentiating between
feeding an animal and grooming an animal - may be
finer than the distinction between indoor and outdoor
images.

As we will demonstrate, our approach is compli-
mentary to activity recognition approaches based on the
analysis of pixel intensities. There are many such ap-
proaches, which variously advance the representation
of action features [13], the learning of relationships be-
tween features and activity categories [7], or the fusion
of multiple features [5]. Activity recognition perfor-
mance is often evaluated on the KTH [12] or Weizmann
[4] datasets, which are ill-suited to our approach since
all events are captured with the same camera and set-
tings in order to control experimentation for the video’s
content. Likewise, the Hollywood [8] or UCF Sports
[11] datasets are ill-suited for evaluation of our method,
as they are trans-coded from broadcast video which is
captured using all professional equipment. Instead, we
evaluate our approach using the TRECVID data, which
were collected from various online sites in the wild.

3. TRECVID and Metadata Collected

The TRECVID MED task was added to the annual
evaluation in 2011 to assess the performance of event
detection techniques on open source video clips. The
evaluation provides training and testing video clips for
several events. Our results are presented on the DEV-T
data, containing five events:

• E01 - Attempting a board trick

• E02 - Feeding an animal

• E03 - Landing a fish

• E04 - Wedding ceremony

• E05 - Working on a woodworking project

For each event type, approximately 100 positive train-
ing examples are given. The testing set consists of 4292
clips, comprising around 370 hours of video, with la-
beled instances of the events. All video is transcoded
to MPEG4 video, and certain metadata (camera make,
model, etc.) have been removed. As a result, the re-
maining metadata which we use in our experiments are:
clip duration, video framerate, video bitrate, audio bi-
trate, and frame resolution.

4. Metadata-based Event Detection

Because the EXIF metadata used in [1] was discrete
in nature, the use of a Bayes network was a natural way
to perform classification. Even seemingly continuous
values, such as exposure time, are quantized to have
step sizes which are referred to by photographers as
‘stops’. In our case, the metadata values are continu-
ous, and range over a broad distribution. Framerate and
resolution are the two partial exceptions to this. The
distribution of frame rates is highly peaked around 30
FPS (NTSC video), 25 FPS (PAL), and 15 FPS (pre-
sumably sub-sampled NTSC), but other values are ob-
served. Likewise, the distribution of resolution has
pronounced peaks for standard video formats (VGA,
PAL, SVGA, HD, etc.), and several non-standard val-
ues videos that were presumably edited post-capture.

In order to handle the continuously-valued metadata
gathered from the TRECVID clips, we employ a Sup-
port Vector Machine (SVM) to perform activity detec-
tion. We use LibSVM [2], and train separate 1-versus-
all classifiers for each of the five events. We add a bias
term (a feature whose value is 1 for all clips) and use
L1 regularization in learning. When training a classi-
fier for event N ∈ {1, 2, 3, 4, 5}, we use the (roughly
100) training clips for that event as positive examples,
and the training clips for events {1, 2, 3, 4, 5}\{N} as
negative examples. Each video clip is represented by a
feature vector containing the five metadata values, nor-
malized to the range 0-1. Due to the low dimensionality
of the feature vector, both training and prediction us-
ing metadata are quite fast. Moreover, since the feature
vector can be constructed without processing any of the
pixels, the overall metadata-based classification is ex-
tremely fast.
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Figure 2. Metadata-based DET curves, us-
ing an SVM to detect 5 complex events in
an archive of 4292 video clips.

5. Experimental Results

Per TRECVID conventions, we present our ex-
perimental results with detection-error-trade-off (DET)
curves, which are very similar to ROC curves but with
nonlinear scaling on the two axes (false alarm probabil-
ity, miss detection probability), so that the curves are
more ‘linear’ [9]. Using the method described in the
previous section, our detection performance is shown
in Fig. 2. For comparison, Fig. 3 shows DET curves
on the same events, using visual features. In particular,
we compute densely-sampled Histograms of Oriented
3D Gradient (HOG3D) features [6] over the video, and
quantize them to a Bag of Words (BoW) feature over
a vocabulary size of 1000. Because DET curves may
have several crossings, directly comparing the curves is
tricky. In order to provide a summary metric, we com-
pute the Area Under the Curve (AUC, where lower is
better) on these DETs, which we present in Table 1.

From the curves and AUCs, we see that metadata-
based classification has performance on the woodwork-
ing event which is comparable to the performance of
the HOG3D feature. On three other events, metadata
performance is worse than HOG3D performance, but
is better than random chance. On the last event, feed-
ing an animal, metadata performance is worse than both
HOG3D features and comparable to random chance.

In addition to the differences in detection perfor-
mance, it is important to understand the differences in
computational complexity. Whereas the metadata fea-

Figure 3. DET curves, using a BoW his-
togram based on HOG3D features.

Event Metadata HOG3D Fused
Board trick 0.370 0.118 0.113

Feeding an animal 0.461 0.262 0.266
Landing a fish 0.418 0.132 0.131

Wedding ceremony 0.309 0.077 0.076
Woodworking 0.257 0.199 0.168

Table 1. Performance (AUC) on events, for
metadata features, HOG3D, and fusion.
Bold: best performance per event.

tures can be constructed on a standard PC in a negli-
gable amount of time, extraction and quantization of
HOG3D features is time-consuming (and proportional
to the total video duration in the archive). The HOG3D
features used here were computed at 1.43 seconds per
video second (i.e., at 1.43x real time), meaning that fea-
ture computation took around 500 CPU-hours.

5.1. Fusion with Visual Features

Because of the low computational complexity of
metadata-based event classification, it can be viewed as
complimentary to traditional, pixel-based event detec-
tion. It is well known that committees of classifiers can
be fused to provide improved performance, providing
that the scores of the base classifiers are de-correlated.
In order to test this, we use Maximum Figure of Merit
(MFoM) fusion [3] to combine detection scores ob-
tained from the metadata and HOG3D base classifiers.
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Figure 4. DET curves, using a fusion of
metadata- and HOG3D-based detection.

Note that this requires that some of the scores used to
produce Figs. 2 and 3 be used for fusion training; we
use 20% for MFoM training, and the remaining 80% to
evaluate performance. Fig. 4 and Table 5 (right column)
show the results of this fusion, and we see that perfor-
mance is significantly improved on woodworking while
not being reduced on other events.

6. Analysis and Conclusions

We present an evaluation of metadata-based activity
recognition from videos in the wild, inspired by previ-
ous work showing scene recognition from EXIF camera
metadata. Whereas that study used a rich set of meta-
data features with correlations introduced by the me-
chanical design of a camera, our features are relatively
poor since camera metadata has been removed. How-
ever, we show that the remaining metadata can be used
to detect complex activities in a large video archive.
While performance is generally worse than methods us-
ing traditional visual features in a bag of words repre-
sentation, we demonstrate that metadata-based analysis
compliments this approach. Should an activity recogni-
tion test set become available with additional metadata
features, we would expect improved performance from
such a method.
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