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Abstract

Recently, fusion of low- and high-dimensional ap-
proaches shows its success in the generic human motion
tracking. However, how to choose the trackers adap-
tively according to the motion types is still a challeng-
ing problem. This paper presents a trackers sampling
approach for generic human motion tracking using both
low- and high-dimensional trackers. Gaussian Process
Dynamical Model(GPDM) is trained to learn the mo-
tion model of low-dimensional tracker, and it performs
better on specific motion types. Annealed Particle Fil-
tering(APF) shows its advantage in the tracking without
limitation on motion types. We combine both of the two
methods and automatically sample trackers according
to the motion types that it is tracking on. To improve
performance, trackers communication is adopt to keep
the better state of trackers. The approach facilitates
tracking of generic motions with low particle numbers.

1. Introduction

Techniques that employ smart sampling in the high-
dimensional state space have been widely used in hu-
man motion tracking, this kind of approach does not
have limitations on motion types, but it lacks stabil-
ity and has high computational cost. In this paper, we
adopt the Annealed Particle Filter (APF) as the high-
dimensional tracking tracker.

Another kind of approaches employs the learned mo-
tion models to deal with the high dimensional problems
of human motion tracking. They perform better on spe-
cific motion types, but cannot extend to other generic
motions. Gaussian Process Dynamical Model(GPDM)
[6] is one of the most effective approaches to learn
the motion model. For tracking, we adopted a similar
framework as the GP-APF [4], and tracked in the low-
dimensional space.

Recently, fusion approaches [2][7] which integrate
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low- and high-dimensional approaches for tracking
generic human motions have gained researchers’ atten-
tions. [2] defined three activity models(i.e. unknown
activities, known activities, known activity transitions),
designed different tracking approaches for each of them
and combined these approaches into a multiple activ-
ity model APF(MAM-APF) framework. And APF is
employed for searching the optimal mode. It obtains a
relative good performance on tracking generic motion
sequences. But when the number of “known” activities
increases, the dimensionality of the joint-activity space
must grow and its computational cost will increase at
the same time. Instead of modeling this joint activity
space, [7] proposed a method to integrate the model
learning approach (GPDM-APF) with the standard APF
into one framework. The two parallel trackers run sepa-
rately, and they are fused by a set of criteria. This makes
the system choose the tracker which achieved better per-
formance as the output. By fusion of the two trackers,
the tracking system outperforms any system that uses
the single approach. But it costs a lot of time when the
two trackers run in parallel. To save time and resources,
we propose a trackers sampling method, which could
automatically sample tracker according to the motion
types that it is tracking on.

Inspired by earlier work [7], we extend a previous
approach by using a trackers sampling scheme. In this
framework, system tracks human motions robustly by
searching for the appropriate trackers in each frame, and
the number of particles for each tracker varies accord-
ing to its tracking performance. By trackers sampling,
when tracking on trained activities, the system auto-
matically switches to the low-dimensional approaches
(GPDM-APF), and most of particles are propagated by
GPDM-APF. While tracking on un-trained motions, the
high-dimensional approaches(standard APF) takes over
the tracking, then more particles are assigned to APF.
By the sampling procedure, system can “sample the best
trackers adaptively from a tracker space to the current
situation” [3]. Fig.1 illustrates the trackers sampling
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Figure 1. lllustration of trackers sampling procedure. For pre-trained activities in HumanEva-I1
S2 Combo((a) Walking or Jogging), sampling methods will assign more particles for GPDM-APF.
While for untrained motions ((b) Balancing), more particles are assigned to APF and it will take
over tracking. Sampling procedure is based on tracker’s performance.

procedure.

Our main contributions are

e A joint state space is adopted to integrate both low-
and high-dimensional states in order to maintain
particles in both state spaces.

e A joint dynamic model is utilized to sample the
trackers in both low and high dimensional spaces,
and this joint dynamic model allows both types of
particles’ propagations.

e The trackers communicate with each other in a
probabilistic way to utilize particles from the other
tracker.

2. Tracking Model

2.1 Tracker Space

The trackers space we used in this paper contains
two independent trackers. The first tracker (denoted by
GPDM-APF [4]) employs the learned motion models
to track human motions. The second tracker takes the
standard APF [1] algorithm to recover human poses in
the high-dimensional pose space.

2.2 Joint State Space

In this trackers sampling framework, a joint
state space is adopted. In this joint space, at
time step t, the state X; can be decomposed as:
XL ZE ALy {XPYY. Where { XU, X[, ALY is the
state for the low-dimensional approach, and {X/'} is
the state for high-dimensional approach. Given the state
X, at time ¢, and the observation Y7.; up to time ¢, our
goal is to estimate the posteriori probability (X;|Y7.+).

2.3 Joint Dynamic model
In this joint state space, the posteriori probability
p(X¢|Y1.+) updates with the following formula:

To propagate the particles in the joint state space, we
propose a probabilistic fusion method to integrate the
two kinds of dynamic models into one. Given the result
of tracker selection at time ¢, T (where T} = 0, 1 when
i = h,1), the joint dynamic model p(X;|X;_1) can be
decomposed as

p(Xe|Xio1) = p(Xo| T}, X)) (T X 1)+

(2
p(Xt» Zt|Ttl, Xi—1, thl)p(Ttl|Xt71)

where p(X;|T}, X;_1) represents the i-th decomposed
dynamic model and p(7T}|X;_1) devotes to the trackers’
probability. In this work, the dynamic model of stan-
dard APF p(X;|T}*, X;_1) uses the addition of Gaus-
sian noise with covariance oy, gy, to approximate.

PIXT), Xeo1) = N(Xe = Xeo1,0ayn) - (3)
The dynamic model of GPDM-APF can be repre-
sented as
P(Xe, Zi|T}, Xi—1, Zi—1) = p(Xe| Ze)p(Ze] Ze—1)
“4)
where p(X;|Z;) is the mapping from the latent variable
space to high-dimensional pose space in (5)

X = fgp(Z) )

and p(Z;|Z;—1) is the temporal dynamics in the la-
tent variable space in (6), which are both learned from
GPDM [6].

P(Zi|Zi—1) = N(Ze—1 + (fyp-dyn(Zi—1) — Z1—1) A,

O'l,dyn)

| (©6)

For the trackers’ probability p(7T}|X;_1 ), we use the av-
erage of particle weights to approximate it.

p(T} | X1) = Z(Wj)/Ni

J

)

where w; is the weight of the j-th particle for tracker T}

P(Xe|Y1a) o p(Ye| Xe) /p(Xt|Xt_1)p<Xt—1 Yii—1)dXi—1 i ime step ¢, and V; is the number of the particles for

ey
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tracker T7.



2.4 Trackers Sampling

The trackers sampling scheme contains obtaining the
samples of trackers and then, given the sampled track-
ers, getting the samples for states. At each time step
t, trackers are sampled according to trackers’ probabil-
ity p(T7| X;—_1), the number of particles that assigned to
each tracker is proportional to the trackers’ probability
(T} Xe1):

For the validation step, each particle is evaluated by
the weighting function (8) that defined by Sigal et al.
[5].

. 1 > (F(p)(1 = M(p)))
weight = exp — (N Xn:( > F0) +
> (M(p)(1 = F(p )))))
2., (M(p)) '
(3)

where F'(p) represents the observation foreground and
M (p) the silhouette map of projection model, and N is
the number of camera views.

With the updated particle sets, the trackers’ sampling
probability p(T7¥|X;) at next time step is recalculated
by (7). The number of particles that assigned to each
tracker is redistributed. Suppose the number of particles
in the joint space is Ng, then the number of particles
assigned for each tracker in the next time step is updated
with the following formula

N; = p(T{|X:) * N, ©)
In this way, the tracker is sampled according to the
trackers’ probability, which is measured by tracking
performance, and the system automatically assigns
more particles for the tracker that has has better per-
formance. So this could save a lot of time and resources
for the tracking.

2.5 Trackers Communication

The trackers sampling mechanism can perform well
in generic motion tracking, especially in switching
between different kind of motions. However, when
switches from trained motions to un-trained motions, or
verse, some better states of trackers may be lost due to
the redistribution of particles. Inspired by [3], we adopt
a trackers communication mechanism. There are two
stages for this communication step: parallel and interac-
tion. At parallel stage, the tracker keeps its own states,
while at interaction stage, the tracker updates its states
with the other tracker’s. And in each time step, which
stage to stay depends on a probability. Here we use
p(T}| X;) to approximate this probability. The tracker’s
state S; accepts the other’s state S; as its own state with
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Figure 2. Weight coefficients of two track-
ers without communication on tracking
HumanEva-II S2.

the following probability
p(Tti | Xt)
5 ,
Zj:l,h p(th | Xt)

The details of the algorithm are stated as follows

(10)

T, =

Algorithm 1 Trackers Communication

Require: Particle Set of T'racker; S;, Particle Set of
Trackery, Sy,

Ensure: Final Particle set S}, S,
In each frame

1: Compute 7, mp
2: for each particle in particle set S; do
3:  r = Rand();
4. ifr < m; then
5: keep its own particle (parallel);
6: else
7: update its particle with mean value of the par-
ticle set S}, (interaction);
8: endif
9: end for
10: for each particle in particle set Sy, do
11: 7= Rand();
12: if r < mj, then
13: keep its own particle (parallel);
14:  else
15: update its particle with mean value of the par-
ticle set S; (interaction);
16:  end if
17: end for

3 Experiments

In order to investigate the performance of our track-
ers sampling method in generic motion tracking, we de-
signed two experiments to show the effectiveness of our
approach.

3.1 Evaluations Trackers
Method

We tested the trackers sampling method with and

without communication on the HumanEva-I1 S2 Combo

on Sampling
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Figure 3. Weight coefficients of two
trackers with communication on tracking
HumanEva-II S2.
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Figure 4. Performance comparison be-
tween the trackers sampling method with
and without communication on tracking
HumanEva-II S2.

motion sequence, and 4 cameras are used for computing
likelihood. We assigned 160 particles for the joint space
and 3 annealing layers for the joint dynamic model.
From Fig.2, we can see that the system can automati-
cally sample trackers from Jogging to Balancing. But
with less communication between trackers, the APF
could not achieve a desired tracking performance. It
was because that APF outperformed GPDM-APF in this
switching phrase, but it still had a relative higher track-
ing error. Fig.3 showed weight coefficients of the two
trackers with communication and Fig.4 illustrated per-
formance comparison between trackers sampling with
and without communication. As we can see from Fig.4,
overall performance was improved, especially for Bal-
ancing phrase.

3.2 Comparison with Fusion Method [7]

We compared our approach with fusion method in
[7] on tracking HumanEva-II S2. Both two methods
were assigned with 160 particles, 3 annealing layers.
Fig. 5 showed the performance comparison of the two
methods. As it illustrated, the trackers sampling method
outperformed fusion method in [7], especially in the
Balancing phrase. This is because in the Balancing
phrase, the sampling approach assigned nearly all parti-
cles to APF, while in [7], the number was fixed and was
just assigned half of particles. That is to say, our method
needed less particles in order to get same performance.
So it saved time and resources.
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Figure 5. Performance comparison be-
tween our approach and fusion methods
in [7] on tracking HumanEva-II S2.

4 Conclusions

In this paper, we proposed a trackers sampling
framework for the generic human motion tracking. The
system can sample trackers automatically according to
the motion types that is tracking on. To improve over-
all performance, a communication mechanism was also
utilized, with which each tracker updated the other’s
state with a probability and then its own performance
was improved. Experimental results showed that our
approach can adapt itself automatically to motion types
and outperformed other fusion approaches.
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