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Abstract

In contrast with Isomap, which learns the low-
dimension embedding, and solves problem under the
classic Multi-dimension Scaling (MDS) framework, we
propose a dimensionality reduction technique, called
Orthogonal Isometric Projection (OIP), in this paper.
We consider an explicit orthogonal linear projection
by capturing the geodesic distance, which is able to
handle new data straightforward, and leads to a stan-
dard eigenvalue problem. And we extend our method to
Sparse Orthogonal Isometric Projection (SOIP), which
can be solved efficiently using LARS. Numerical exper-
iments are reported to demonstrate the performance of
OIP by comparing with a few competing methods.

1. Introduction

Researchers are interested in reducing dimensions of
digital data is because of the existence of digital infor-
mation redundancy. It is well known that extracting ef-
ficient features from data can improve object classifi-
cation and recognition, and simplify the visualization
of data. Manifold learning theory [4, 3, 11, 12] was
introduced into dimensionality reduction field in early
20 century, which assumed that a low-dimension mani-
fold is embedded in high-dimension data. Researchers
pay lots of attention to discovery, and prove that a low-
dimension manifold exists. Isomap was proposed by
Tenenbaum et al. [4], in which geodesic distance was
used to capture the global structure in high dimension,
and can be solved under MDS framework. Roweis and
Saul [3] proposed a nonlinear dimensionality reduc-
tion method, Locally Linear Embedding (LLE), which
aimed at preserving the same local configuration of each
neighborhood in low dimensional space as in high di-
mensional space. He and Niyogi [2] found an optimal
linear approximations to eigenfunctions of the nonlin-
ear Laplacian Eigenmap, called Local Preserving Pro-
jection (LPP), and gave the justification in the paper

with the Graph Laplacian theory. Cai et al. [5] pro-
posed a variation of Laplacianface (LPP) — Orthogonal
Laplacianface (OLPP), which iteratively computed the
orthogonal eigenvectors to compose the projection ma-
trix. Kokiopoulou and Saad [6] analyzed and compared
LPP and OLPP, and proposed an Orthogonal Neighbor-
hood Preserving Projections (ONPP). It can be thought
of as an orthogonal version of LLE, but projections are
learned explicitly as a standard eigenvalue problem.

Dimensionality reduction techniques is either to seek
for a representation of data in low dimension to benefit
the data analysis or to map data from high-dimensional
space to low-dimensional space through an explicit
linear or nonlinear projection learned from a training
dataset. Multidimensional Scaling (MDS) [1] is a clas-
sic data embedding technique, and considers preserv-
ing the pairwise distance to obtain the low dimension
configuration. Principal component analysis (PCA) can
be used as a projection method, which learns a lin-
ear projection by maximizing the variance of data in
low dimension. PCA is identical to Classical Multidi-
mensional Scaling if euclidean distance is used [1], but
PCA learns the projection. Linear Discriminant Anal-
ysis (LDA) maximizes the ratio of between-class vari-
ance to the within-class variance to determine an ex-
plicit projection as well.

In this paper, we are motivated by Isomap [4] and
Isometric projection [8], and propose a linear projec-
tion method, called Orthogonal Isometric Projection,
which is a variation of Isometric Projection. Cai pro-
posed Isometric Projection [8] addressed the same pur-
pose as ours. However, in this paper, we constrain the
projection is orthogonal which differs from Cai’s, and
solve a standard eigenvalue problem. The main differ-
ence between our method and Cai’s orthogonal version
of Isometric Projection is that: we build a reasonable
objective function, and solve the optimization in a stan-
dard eigenvalue problem, while Cai solved the problem
in a generalized eigenvalue problem. We extend our
method to the sparse orthogonal isometric projection.
We test our method on USPS data set. In the following
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section we will briefly introduce Cai’s Isometric Projec-
tion to demonstrate the advantages of our algorithm.

2. A brief review of Isomap and Isometric
Projection

2.1 Isomap

Isomap was proposed by Tenenbaum and et al. [4],
and is one of most popular manifold learning tech-
niques. It aims to obtain an euclidean embedding of
points such that the geodesic distance in high dimen-
sional space gets close to the euclidean distance be-
tween each pair of points. The mathematical formu-
lation is

min
∑
i,j

(dG(xi, xj)− dE(yi, yj))
2 (1)

dG is the geodesic distance, which is defined locally to
be the shortest path on the manifold, dE is the euclidean
distance, and in a matrix form:

min ‖τ(DG)− τ(DE)‖2 (2)

DG is the geodesic distance matrix,DE is the euclidean
distance matrix, τ is an operation which converts the
euclidean distance into an inner product form. The
problem is solved under the MDS framework. Isomap
makes an assumption that a manifold existing in high
dimension space, and applies the geodesic distance to
measure the similarity of each point pair. However, if
insufficient samples are given or the data is noised, the
intrinsic geometry of the data is difficult to be captured
by constructing the neighborhood graph.

2.2 Isometric Projection

Cai et al. [8] extended Isomap algorithm to learn a
linear projection by solving a spectral graph optimiza-
tion problem. Suppose that Y = V TX , they minimized
the objective function,

min ‖τ(DG)−XTV V TX‖2 (3)

To make the problem tractable, they imposed a con-
straint V TXXTV = I , and rewrote the minimization
problem as

arg max
V

tr(V TXτ(DG)XTV )

s.t. V TXXTV = I

which is equivalent to a generalized eigenvalue problem

Xτ(DG)XTV = λXXTV

To solve the problem efficiently in computation cost,
Cai also applied the regression in [8, 13] over Y and
X called spectral regression (SR). Y is computed first,
which is the eigenvector of τ(DG), then

a = arg min
a

m∑
i=1

(aTxi − yi)2 + α‖a‖2 (4)

The condition V TXXTV = I constrained that low-
dimension embedding of points is orthogonal, namely,
Y TY = I .

3. Orthogonal Isometric Projection

The main idea of orthogonal isometric projection is
to seek an orthogonal mapping over the training data set
so as to best preserve the geodesic distance on a neigh-
borhood graph, and learn a linear projection under the
general Isomap framework, but has a different and rea-
sonable constraint that projections are orthogonal.

3.1 The Objective Function of OIP

Under the Isomap framework, it minimizes the ob-
jective function in Equation 2. In math τ(DG) =
−CWC/2, and C is the centering matrix defined by
C = In − 1/N · eNeTN , where eN = [1, ..., 1]TN , W
is a Dijkstra distance matrix based on K nearest neigh-
bor graph over all data points. Let f(V ) = ‖τ(DG) −
XTV V TX‖2, we are seeking for a linear projection:

min
V

f(V ) (5)

Let S = τ(DG), which is a known neighborhood graph
constructed from the given data set. We have

f(V ) = tr((S −XTV V TX)T (S −XTV V TX))

= tr(STS) + tr((XTV V TX)T (XTV V TX)

−2ST (XTV V TX))

= tr((XTV V TX)T − 2ST )(XTV V TX)

+tr(STS)

So the objective function equation 5 is equivalent to

min tr(V TX((XTV V TX)T − 2ST )XTV )

s.t. V TV = I

Let M = X(XTX − 2ST )XT , then the problem be-
comes to

min tr(V TMV )

s.t. V TV = I
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Algorithm 1 Orthogonal Isometric Projection
1: Construct a neighborhood graph G over the data

points. Compute the Dijkstra distances matrix
W (i, j) = dG(i, j) over the graph between every
point pair. dG(i, j) is the shortest path of i and j,
otherwise dG(i, j) = inf .

2: Compute τ(DG) = −CWC/2, C is the centering
matrix, and C = In − 1/N · eNeTN .

3: Compute the eigenvectors of M = X(XTX −
2τ(DG)T )XT . V is determined by eigenvectors
of M associated with p smallest eigenvalues.

which leads to a standard eigenvalue problem,

MV = λV (6)

V is determined by eigenvectors ofM corresponding to
p smallest eigenvalues.

3.2 The Algorithm of OIP

First we need to construct the neighborhood graph
G. As all we know, there are two options:

• if xj ∈ N(xi), N(xi) is the k nearest neighbor of
xi,

• if ‖xi − xj‖2 ≤ ε, ε is a small number as a thresh-
old.

the edge between i and j weighted by gaussian kernel
is defined as e−‖xi−xj‖2 .

We summarize the algorithm in Alg 1.

4 Sparse Orthogonal Isometric Projection

Our problem essentially solves a standard optimiza-
tion in Equation 6, which also can be incorporated into
a regression framework in the way of Sparse PCA [10].
The optimal V is the eigenvectors with respect to the
maximum eigenvalues of Equation 6. Since M is a
real symmetric matrix, so M can be decomposed into
X̃X̃T . Suppose the rank of X is r, and SVD(X̃) is

X̃ = Ũ Σ̃Ṽ T ,

it is easy to verify that the column vectors in Ũ are the
eigenvectors of X̃X̃T . Let Y = [y1, y2, · · · , yr]n×r,
each row vector is a sample vector in r-dimensional
subspace, and V = [v1, v2, · · · , vr]m×r. Therefore, the
projective functions of OIP are solved by the linear sys-
tems:

XT vp = yp, p = 1, 2, · · · , r.

vp is the solution of the regression system:

vp = arg min
v

n∑
i=1

(vTxi − yip)2,

where yip is the ith element of yp. Similar to Zou et
al. [10], we can get the sparse solutions by adding L1

regularization:

vp = arg min
v

n∑
i=1

(vTxi − yip)2 + α

m∑
j=1

‖vjp‖

where vjp is the jth element of vp. The regression can
be solved efficiently using LARS algorithm.

5. Experiments

USPS is a well known handwritten digits corpus
from US postal service. It contains normalized gray
scale images of size 16 × 16, and totally 9298 sam-
ples with 256 features. Fig. 1 shows some examples
of USPS dataset. We evaluate our algorithm on USPS,
which are downloaded from public website1, and com-
pare with PCA, LDA, LPP, IP, and IP+SR, and demon-
strate the average accuracy and average error rates in
the section. A human error rate estimated to be 2.37%
shows that it is a hard task over USPS dataset [9]. We
randomly sample 25 times from the datasets as the train-
ing sets with varying rates from 20% to 80%, and the
rest are used for testing. We map points in test sets
by projections learned from training sets, and apply the
nearest neighbor to determine categories labels. We
also demonstrate the dimensions versus average error
rate by half training and half testing. Assume that li is
the ground truth, bi is the label assigned after dimen-
sionality reduction by methods, Ntest is the number of
test samples,

Acc =
1

N

N∑
j=1

∑Ntest

i=1 δ(li, proj(bi))

Ntest
,

and N = 25 in our experiment.
We compare our method with IP, IP+SR, LDA, and

LPP in Table 1. Our method outperforms all other meth-
ods. The bolds are from our method, ± shows the
square root of the variance. With the number of training
samples, the classification precision increases as what
we expect. Fig. 2 shows with the number of dimensions
increases, the average classification error decreases.

1http://www.zjucadcg.cn/dengcai/Data/TextData.html
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Table 1. Comparison on USPS
Train ratio LDA LPP IP IP+SR OIP

20% 89.13 ± 0.34 92.95 ± 0.36 92.11 ± 0.39 93.90 ± 0.50 95.10 ± 0.20
30% 90.39 ± 0.32 94.47 ± 0.30 93.61 ± 0.33 94.96 ± 0.36 95.93 ± 0.17
40% 91.18 ± 0.36 95.20 ± 0.27 94.48 ± 0.28 95.69 ± 0.36 96.40 ± 0.20
50% 91.54 ± 0.32 95.75 ± 0.29 94.85 ± 0.42 95.91 ± 0.34 96.65 ± 0.26
60% 91.97 ± 0.32 96.14 ± 0.24 95.21 ± 0.31 96.14 ± 0.35 97.01 ± 0.25
70% 92.02 ± 0.49 96.43 ± 0.33 95.61 ± 0.35 96.59 ± 0.32 97.17 ± 0.23
80% 92.19 ± 0.58 96.71 ± 0.42 95.97 ± 0.40 96.74 ± 0.40 97.35 ± 0.34

Figure 1. USPS examples
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Figure 2. Dimensions vs. average classi-
fication error on USPS dataset.
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