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Abstract

It has been shown, in previous work, that the 3D po-

sition of a line can be reconstructed from a single image

in vision systems that do not possess a single viewpoint.

We present a new method that, in a non-central axial ca-

tadioptric system, can achieve line spacial reconstruc-

tion from 3 or more image points, given the distance

ratio of 3 points in the line (a fair assumption in, for

example, structured environment with repetitive archi-

tectural features). We use cross-ratio as an invariant to

constrain the line localization and perform the recons-

truction from a set of image points through non-linear

optimization. Experimental results are presented.

1. Introduction

Catadioptric vision systems use a combination of

cameras and mirrors to acquire images. A particular

class of systems, central catadioptric cameras, allow for

a single-viewpoint projection model [1]. In general,

however, a catadioptric camera is non-central [10], and

the viewing rays do not intersect at a single point.

The multi-viewpoint characteristic of non-central ca-

meras has been explored to achieve spacial localization

of lines from a single image [3–6, 8]. In non-central

systems, the viewing rays corresponding to a line in the

image form a non-planar surface that, in a general case,

allows only for a finite number of possible space lines
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transversal to the viewing rays.

In [3], Caglioti and Gasparini discussed constraints

on system geometry and line positioning that enable the

line to be univocally located. They also presented an

algorithm to reconstruct a line from 4 image points, as-

suming an axial-symmetrical system. In a closely re-

lated paper [8], Lanman et al. shown how to recons-

tructed a line spacial position using Singular-Value-

Decomposition of a matrix of Plücker coordinates of 4

viewing rays. The constraint of placing the camera on

the mirror axis was relaxed in [4], and the conditions

under which lines can be reconstructed were analyzed

in this more general system geometry. In [5], Caglioti

et al. proposed two new methods for line localization.

One method first tried to identify two planar viewing

rays (whose existence is not guaranteed for a line in ge-

neral position), and then use two more rays to provide

a simple geometric solution for the reconstruction. The

other method relied on a constrained non-linear opti-

mization whose error function was based on a bilinear

operator of Plücker vectors. In [6], the image of a space

line was used to provide constraints to the calibration of

an off-axis catadioptric camera.

In this paper we propose a new algorithm to re-

construct the spacial localization of lines from a single

image, acquired from a non-central axial catadioptric

system. The system is composed of a rotationally sym-

metric mirror and a pinhole camera with its optical cen-

ter placed on the mirror axis. We assume that the system

is calibrated, so that each image point corresponds to a

known viewing ray in space. Our algorithm uses the

images of 3 points on a space line (the previously cited

methods use 4 points), and requires the knowledge of

the ratio of distances between those 3 points. In structu-

red environments, the distance ratio can be determined,

for example, from repetitive features in the floor, walls

or ceiling, like windows, light fixtures, tiles, etc.
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Figure 1. The axial catadioptric geometry.

By using the cross-ratio as an invariant in our image

formation geometry, we show how to obtain a constraint

on the line spacial direction, and determine its localiza-

tion through non-linear optimization of a single variable

function. All the points on the image contour of the line

can be integrated in the non-linear optimization to re-

duce the effect of noise.

2. Cross-ratio as an invariant in the axial ca-

tadioptric geometry

In this section we discuss the system geometry and

show that the cross-ratio can be used as an invariant

between scene and image points. This property was first

noted by Wu and Hu in [11], that used it in the calibra-

tion of central catadioptric systems. We show how it

can be applied to our model and used to constrain the

direction of the space line.

As previously mentioned, we consider an non-

central axial catadioptric system. Additionally, we as-

sume that the camera is aligned with the mirror, i.e.,

the camera’s principal axis coincides with the symme-

try axis of the mirror. A pre-rotation can be performed

to align the camera frame with the mirror axis by ap-

plying a homographic point transformation to the image

(called a conjugate rotation [7]).

Consider Fig. 1. Let C be the camera’s optical center

and o the principal point of the image (image center).

Let A, B, C and D be four 3D points belonging to a

space line. Point a is the reflected image of A. Point

SA is the reflection point on the surface of the mirror.

From the laws of reflection, we know that the incident

ray, the reflected ray and the mirror surface normal at

point SA must belong to the same plane. We refer to

this plane as the projection plane of point A. Note that,

given the mirror’s rotational symmetry, every projection

plane must contain the mirror axis.

Since the camera principal axis (z-axis) is aligned

with the mirror axis, the orthographic projection of

point A in the image plane, denoted by A
′, is also on

the same projection plane. Thus, in the image, the prin-
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Figure 2. The cross-ratio in the image.

cipal point o, the orthographic projection A
′, and the

reflected image a are collinear. Fig. 2(a) shows this re-

lation for images of the four image points. It is evident

that the cross-ratio of the four points A
′, B

′, C
′ and

D
′ is equal to the cross-ratio between the four concur-

rent lines passing through a, b, c, d and the vertex o

(c.f. [9]). Furthermore, since the cross-ratio is invariant

under an orthographic projection we can write ({·} de-

notes cross-ratio)

{o;abcd} = {A′
B

′
C

′
D

′} = {ABCD} . (1)

3. Reconstructing a space line

In this section we present our reconstruction method.

Constraint on the line direction

Consider Fig. 2(b), where L
′ is the orthographic pro-

jection of the space line and l
′ is the image line joining

points o and d. If point D is considered to be at infi-

nity, D → ∞, then l
′ becomes parallel to L

′, and its

direction can be obtained from equation 1, given the

knowledge of the distance ratio between three (finite)

points of the space line, A, B and C.

Let n =
[

nx ny 0
]T

be a 3D vector that belongs

to the image plane and is orthogonal to line l
′, poin-

ting in the direction of the orthographic projection of

the space line (w.r.t. the image center o). Also, consider

this vector to be normalized to unit length, ‖ n ‖= 1.

Vector n can be seen as the normal vector to a family

of planes that are perpendicular to the image plane and

are parallel to the space line L. This family of planes

can be parameterized by Π(α) ∼
[

nx ny 0 −α
]T

,

where α > 0 is a scalar. Note that a 3D point X belongs

to plane Π(α) iff
[

X
T 1

]

Π(α) = 0.

3D reconstruction

The spacial line must belong to the surface of the vi-

ewing rays back-projected from the line image, and, at

the same time, to a plane in the family of planes Π(α).
Assuming general position, the curved surface of the vi-

ewing rays contains two lines transversal to the viewing
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rays [3]. One solution is the mirror axis, as all rays pass

through it, and corresponds to plane Π(α = 0). The

other solution corresponds to the spacial line itself. The

problem is, thus, reduced to finding the value of α > 0
that produces a line as the result of intersecting plane

Π(α) with the surface of the viewing rays.

Consider N viewing rays obtained from back-

projecting image points on the line. Each ray is defined

by the reflection point on the surface of the mirror Si

and by a direction vector Ri. The subscript i denotes

the i-th ray. The intersection point between a viewing

ray and plane Π(α) is given by

Xi(α) = Si +

(

α − n
T
Si

nTRi

)

Ri . (2)

Now, consider a matrix Q that is constructed by stacking

the set of N intersection points in the following manner:

Q(α) =





X1(α)
T

1
· · ·

XN (α)
T

1





The right null space of Q defines a plane containing

all the intersection points Xi(α), i = 1, .., N . This null

space always exists because the points belong to plane

Π(α). However, if all the points are collinear, Q will

have a 2-dimensional null space that spans a pencil of

planes (with the line as the axis of the pencil) [7].

Assuming the presence of noise, the spacial line lo-

calization can be estimated from the following proce-

dure: Consider function f(·) that returns the second

smallest singular value resulting from a Single-Value-

Decomposition (SVD) of a matrix. The value of α that

produces the “best” set of intersection points Xi(α),
i = 1, .., N , can be obtained by applying non-linear

optimization methods (e.g. Levenberg-Marquardt) to

min
α

f
(

Q(α)
)

. (3)

The space line L is obtained by fitting the set of in-

tersection points.

Using concurrency and perpendicularity to improve

the reconstruction

In some situations, additional information regarding the

scene may be available, which can be used to improve

the reconstruction accuracy and immunity to noise. We

outline the procedure that can be used when two distinct

lines have a common intersection point visible in the

image and are known to be perpendicular.

Let Xi(α), i = 1, .., N be the set of viewing rays of

one line, and Yi(β), i = 1, .., M the set of the other

line. Each set is parameterized by a different scalar, α

and β, because each line is associated to different fa-

mily of planes that constrain its direction in space. Let

C denote the viewing ray corresponding to the concur-

rency point identified in the image. Since C belongs to

both lines, we have that C(α) = C(β) and, substitu-

ting in equation 2, it is straightforward to obtain β as

a function of α, so that, once again, the reconstruction

problem reduces to optimizing a function in a single va-

riable. In this case, the objective function f (equation 3)

should return a measure of orthogonality, e.g. the inner

product between the direction vectors of both lines.

4. Experimental Results

We now present some experimental results to vali-

date our reconstruction algorithm.

Fig. 3(a) shows the image obtained using a spheri-

cal mirror (30cm radius) that is reflecting planar chec-

kered patterns. Points belonging to two distinct lines

were identified in the image: 8 points in line 1 (green

‘•’), and 7 points in line 2 (blue ‘⋄’). In each line, three

points in the set were selected and used to calculate the

distance ratio (marked with ‘+’).

We calibrated the system using the following proce-

dure: First, the camera’s internal parameters were es-

timated using standard methods [2]. An auxiliary grid

pattern (visible on the upper left corner of Fig. 3(a)),

with a known pose w.r.t. the mirror, was used to ob-

tain the camera/mirror transformation directly from the

image (again using [2]). Finally, the transformation

between the mirror and the remaining checkered pat-

terns was recovered from another perspective image,

external to the scene.

Table 1 summarizes the reconstruction results for

each line using all the marked points and using only the

3 points with known distance ratio (minimum number

of points in our method). The results obtained by ap-

plying the 4 points method in [3] to our setup are provi-

ded for comparison. Also shown is the result of recons-

tructing both lines simultaneously using the knowledge

that they are concurrent and perpendicular in space. The

results are quantified by a distance error derr, obtained

from the average distance between the end points of the

real and reconstructed line segments, and an angle error

γerr, the angle between the real and reconstructed li-

nes. Also shown is the percentage distance error, which

is the ratio between derr and the average of the distan-

ces between the end points of the real line and the center

of the camera.

In comparison to the method in [3], our algorithm

produced better results. The simultaneous reconstruc-

tion of both lines performed better than each of the in-

dividual results, a natural consequence of using more
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Figure 3. Test images and reconstruction results. Fig.(a), (b) and (c), from left to right.

4 points 3 points all points

(method in [3]) (our method) (our method)

line 1 346 39.6% 23.7
◦

31 3.6% 1.2
◦

53 6.0% 1.0
◦

line 2 259 29.8% 24.3
◦

190 21.8% 2.4
◦

106 12.2% 2.0
◦

both – – – – – – 43 5.3% 1.2
◦

Table 1. Experimental results. Each cell

shows: derr[mm]; derr[%]; γerr[
◦]

information about the scene. As observed in [8], the re-

construction accuracy is very sensitive to noise in the

system’s calibration and in image point identification.

Fig. 3(b) shows a test image of an outdoors scene

with the facade of a building (the image is slightly crop-

ped to provide the reader more detail of the reflected

image). Points belonging to 4 lines were marked using

visible features of the windows and wall (line 1: green

‘•’; line 2: cyan ‘×’; line 3: red ‘∗’; line 4: blue ‘⋄’;).

First, each line was reconstructed individually. Unlike

the previous experiment, the ground truth spacial posi-

tion of the lines (w.r.t. the camera frame) was not avai-

lable, so we compared the length of the reconstructed

and real line segments. The line segments were recons-

tructed within 30% to 50% of the real length. Next, we

paired line 1 with line 3, and line 2 with line 4, and

reconstructed each pair using the fact that the lines are

concurrent and perpendicular. This time, the length of

each line was recovered to within 10% of the real va-

lue (worst case). Furthermore, and although each pair

was reconstructed independently, all the recovered lines

were approximately coplanar. Fig. 3(c) shows the re-

constructed line points projected to the recovered “wall”

plane (obtained from a least-squares fitting), overlaid

on the ground truth line segments (black lines). The

distances between the reconstructed 3D points and the

estimated plane had an RMS value of 75mm.

The outdoors scene proved more challenging and

produced poor results on the recovery of individual li-

nes, although the reconstruction of lines pairs perfor-

med very well.

5. Conclusions

We presented a new method for spacial reconstruc-

tion of lines from a single image of a non-central axial

catadioptric systems. We use knowledge about the

scene structure, namely the distance ratio of 3 points, to

constrain the line 3D position and facilitate the recons-

truction. Our experimental results show that, although

the reconstruction can be very sensitive to noise, good

results can be achieved even with outdoors scenes.
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