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Abstract.

This paper introduces a vision-based motion capture
system. Motion capturing technology consists of two
categories: model-based tracking and example-based
indexing. The motion capturing systems face two
challenges: parameter estimation in high-dimensional
space and self-occlusion. Our algorithm extends the
locality sensitive hashing (LSH) method to find the
approximate examples and then estimates the pose
parameters in high search space. The contributions of
this method are proposing the modified LSH function,
applying Hough voting to estimate the pose
parameters, and adding the temporal/prediction
constraints to increase the prediction accuracy.

1. Introduction

Vision-based human body tracking and pose
estimation has been simplified by the introduction of
real-time depth camera [1~3]. However, until the
launch of Kinect, none ran at interactive rates on
consumer hardware while handling human body of
different shapes wundergoing general articulated
motions. Most of vision-based approaches face two
challenges: the parameter estimation in high-
dimensional space and self-occlusion.

The vision-based human motion capturing can be
divided into two categories: model-based tracking and
example-based pose estimation. Many model-based
human tacking methods apply particle filtering (PF)
[11,12]. Example-based method exploits a set of
labeled training examples. For human pose estimation,
high-dimensional search space and large data sets
make this method complicate. In [4, 5], human pose
estimation can be solved by using similarity measure
for shape matching. In [6], they overcome the high-
dimensional space problem by using Local-Sensitive
Hashing (LSH) [10] for fast approximate neighbor
search. In [7], a patch-based approach combined with
LSH is used to retrieve example patches and estimate
the pose parameters. Shotton et al. [8] predict 3D
positions of body joints from a single depth image. By
using lots of training data, they train a random
decision forest classifier. Wang et al.[9] propose an
upper body motion capturing system using one or
more cameras and a color shirt. They classify the color
regions to estimate the pose and use the estimated pose
to refine the color classification iteratively.
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We estimate the pose parameter by assembling the
local example patches pre-stored in the database. In
recognition stage, we use a set of local patches and
modified LSH to extract the similar example patches,
and then apply the temporal and prediction constraints
to the similar example patches and then use Hough
voting to estimate the pose parameter..

2. Patch Database Construction

Our approach estimates the pose parameter by
assembling the retrieved example patches indexed by
the input local patches. We need a database containing
these example patches generated by 3D human model.

2.1 3D Human Model

Human pose can be described by 10 pose parameters
including the 3D positions of torso, neck, left/right
shoulders, left/right elbows, left/right hips, and
left/right knees. Then, we divide the pose parameter
©=(0,,...0,0) into six local pose parameters,
0={0,,...0¢} where ©,=(0;, 6,) for the two joints of
the right hand, ©®,=(0;, 0,) for the two joints of the left
hand, ©;=(0s5, 6¢) for the two joints of right leg,
0,=(07, 85) for the two joints of the left leg, and @s=6,
for the neck joint and ©¢=0,, for the position of the
torso.

2.2 Local Patch and Shape Context Extraction

We use Kinect to capture the images of human motion.
After extracting the human silhouette, we trace along
the boundary contour of the silhouette to find the
sample points and then extract the local patches as
shown in Figure 1. There are 60 sample points and 60
local patches with size 100x100.
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Figure 1. Path extraction along the boundary.

Based on the depth difference, we differentiate
the boundary of silhouette as the boundary contour
and the frontal contour. The frontal contour
overlapped with the boundary contour is called the
augmented contour as shown in Figure 2(d).



Figure 2. (a) Input image, (b) Human silhouette, (c)
Frontal image, and (d) Augmented contour.

With augmented contour, we sample the boundary
contour sparsely to extract the local patches which are
described by the shape context. The shape context is
described with constant radius Ry, vector v from the
patch’s position to the reference point of the model,
and the contour points observed within the subarea of
the patch. As shown in Figure 3, the patch is a circular
shape which is divided into » radius in radial direction
and @ angles in angular direction with 76 subareas. Its
shape context is converted into 2-D histogram of
which each beam represents the number of contour
points inside the subarea. A local patch is divided into
24 subareas and described by the shape context which
is a 24-D feature vector.
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Figure 3. Shape Context of the local patch of Figure 1.

Based on the position to the centroid of the human
silhouette, the local patch may be classified into six
different categories. The local patches in the specific
category can only vote for the corresponding local
parameter ©;, i=1~6. The advantages of local patch
categorization are (a) less collision of similar local
patches, and (b) more effective Hough voting for the
correct local pose parameter.

To make our algorithm invariant to the size
variation, we rescale the size of each extracted local
patch. Each sampled contour point is the center of the
local patch. We compute the average distance of every
pair of points as R For each input silhouette, we also
compute the mean distance between two sample point
as R;,,. Then, the radius of the input local patch is
computed as 7,y ~(Riypud/ Rap)¥ap, Where 7y, is the
radius of the local patch in the database.

3. Nearest Neighbor Search

Example-based pose estimation can be formulated as a
nearest neighbor searching problem between the input
patch and the example patches in the database which
can be solved by the local sensitive hashing.

3.1 Local Sensitive Hashing

The local sensitive functions hash (LSH) function 4 is
defined as

if d(u,v) <7 then Pr(h(w) = h(v)) = p, (1)
if d(u,v) > (1 + €)r then Pr(h(u) = h(v)) < p,(2)
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where u=(u,, ...,u,) and v=(v,, ...,v,) are two samples,
d(-) is a distance measure, 4 is a hash function that
convert a sample point to a binary hash value. The set
of hash functions satisfying the two conditions are
called locality-sensitive hash functions. An effective
LSH function must satisfy two conditions: p;>p,, and
pr>1/2. A k-bit LSH function is g(x)=[/(x),....h(x)].

The samples with the same hash are assigned to
the same bucket called collision. The probability of
collision for similar sample points is at least 1—(1-p;)",
while the probability of collision for dissimilar sample
is at most p,". Different examples assigned to the same
bucket create a collision.

3.2 Hash Function Determination

Given a sample set P={p} with p=(x,,....x,;), we have
C= Max{x,, ... x4 |f0r all pe P}, and convert p to a C-
bit binary vector as v(p)= Unaryc(x;), ....Unaryc(x,).
Unaryc(x) indicates that a scalar x is represented by a
sequence of C-bits bit stream of which there are x
number of “1” followed by C—x number of “0”. Two
closed enough samples are called the positive sample
pair, whereas two distant samples are called the
negative sample pair. After LSH function, if the two
binary hash values of two positive sample pair are the
same, then they are True Positive(TP), and if the two
binary hash values of two negative sample pair are the
same, then they are False Positive(FP). Here, we
select the outcome of certain bit of Unaryc(x). The
selected bit will make the 7P rate>p;, and FP rate < p,.
The hash function of component x is a binary value,
h(x)=0/1, which can be treated as a categorization
process. The pseudo codes for 7P and FP rates are

For True Positive: For False Positive:
If d(u,v)<r If d(u,v)>(l+e)r
TPCount +1 FPCount +1
For every bit For every bit
If ku(b) ==kv(b) If ku(b) ==kv(b)
TPy +1 FPy+1

TPcoun: 1s the total number of TP of the sample pirs,
whereas FPc,,,; 1S the total number of FP of the
sample pairs; If the b™ bit is selected, then the total
number of 7P generated is 7P,, and the total number
of FP generated is FP,. ku(b) is the outcome of the b
bit of example u.

3.3 Hash Table Construction

After hash function training process, we select £ hash
functions to generate the k-bit hash key to generate the
hash table as the sample patch database. However, the
shape context of two different local patches may be
converted to the same hash key called collision. The
example patches with the corresponding pose
parameters are stored in the buckets in the hash table.
The buckets with the same hash key are connected as a
linked list. In each bucket, we store an example patch
with the corresponding pose parameter. To reduce the
invalid hash keys, we reorder the index of the hash key
to reduce the empty bucket.



3.4 Modified LSH

The Unary operation with large C is very time
consuming. Unary operation may add many “0” for
the component corresponding to the subarea of small
radius so that the length variation of the bit stream for
each component will be huge. So, we propose a
normalization process before Unary operation to
reduce C by converting the shape context of local
patch p=(x,,....xz) to p=(y,, ....ya), with y= Int[8xx/C;]
and 0<y;<8. In Figure 4, an 88-bit (8+60+20) stream is
reduced to 24-bit (8+8+8).
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Figure 4. Normalization process.

Then, we propose a simplified Unary operation.
Let x, be the d” component of x and converted to a bit
stream of which the /” bit can also be determined by
comparing x; with i. If x,>i, then the " bit will be “1”
otherwise it will be “0”. After Unary operation, we
find the hash function /,(x) for component d. The hash
function generates a binary output by selecting the i
bit of the bit stream generated by Unary operation.
The i is determined by selecting the i bits of
Unaryc(x;) which generate the best trade-off between
higher 7P rate and lower FP rate. A k-bit LSH
function can be rewritten as g(x)=[/;(x),....hi(x)] of
which A, (x)=1 if x,2i4, else h(x)=0 for d=1,...k.

4. Parameter Estimation

For each input local patch, we find its category and
use LSH indexing to extract the similar patches, and
then apply the Hough voting to find the most probable
pose parameter. However, the local pose parameter
receiving the maximum votes may not be the right
solution. So, we apply the temporal and prediction
constraints before and after the Hough voting process.

4.1 Temporal Constrains

Human articulated motion is smooth and continuous
so that the pose difference between two instances
satisfies a so-called the temporal constrain. In
training, we model the motion parameters of the limbs
(i.e., left shoulder and right elbow). For each joint, we
collect the difference of pose parameter at two
continuous time instance. The distribution of the
difference can be described as a Gaussian distribution

N, ©).
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4.2 Hough Voting

For each input local patch, with specific category ¢
(¢=1~6), we may compute the hash key to retrieve the
corresponding similar example patches I in database
Qq. To simplify the estimation process, we assume that
the probabilities of local pose parameters in different
categories are statistically independent. So we have

P(®|E) = Xg-1p(®:|ET) (4)

where E is a set of extracted local patches E9 = {e]'}
in the ¢™ category. Based on the local patches, we use
LSH fp retrieve the example patches (I, k=1,..K}
in Q. Each example patch contributes votes to
estimate the local pose parameter ©;. The local pose
parameter estimation is described as

p(©;]E1) = TIEISE_ p(@ Il leMp(el)  (5)

where p(©; |[kq)is the likelihood of estimating the local
pose paramefer ©; based on the retrieved example
patches {l,, k=I1,..K}, p(le;) represents t
likelihood of finding the example patches, and p(e; )
denotes the likelihood of observing the input patch.

For an input local patch, we may find multiple
example patches with the similar shape context. To
apply the temporal constraint, we asgign a weight w; to
each retrieved example patch [, . It indicates a
different contribution to estimate the local pose
parameter ©; bx cgsting different weighted vote. The
Welght Wk:P([k |el~ ) = 1/]vﬂcEQ7 1f|®, (t)_ 9,‘ (t+1) | <0,
otherwise w;=0. Nj.o 1s the number of retrieved
sample patches in Q with the same ©,. Each input
patch is assigned an equal priori.

4.3 Prediction Constraint

Due to self-occlusion, we cannot find the correct pose
parameter based on the voting only. We propose a
prediction constrains which relates the candidate pose
parameter ©; with the predicted pose parameter ©,,.4i
and determines the weight for the candidate pose
parameter ©; as We,- We modify (5) as follows

9]

p(©;]E7) = TIE) Sk, we,p (01 )p (1 e )p (ef!)
The weight We; is defined as
B ( 10, = Opred] )
We, = | oo o 1
%10 = © pred

©; is the candidate pose parameter receiving enough

votes and satisfying the temporal constraints and @,
is the predicted pose parameter defined as

N
1
®pred = Nz ®]
j=1

The voting distributions for the example patches in
different categories are different which is used for
final pose parameter estimation.

5. Experimental Results



We use the commercial motion capture system to
capture the positions and orientations of 10 joints as
the ground truth. To create the real silhouette images
of real human figure, we use the depth images from
Kinect. We generate 12000 dataset images captured
from two different human figures performing 4000
various poses. The training set contains 8000 images,
whereas the testing set contains 4000 images.

Figure 5. Input images and 3D avatar.

Figures 5 illustrates our experimental results. To
measure the accuracy of the estimation, we compute
the average error between the estimated joint positions
of the ground truth as

Avg error=2 "¢, ||g;— ¢[//10 9)

where j is the index of the joint, g; indicates the joint
3D position parameter of the ground truth, e; indicates
the estimated joint 3D position parameter, and ||-|| is
the Euclidian distance measure. As the number of
input patches increases, the average error decreases
but the computation time increases. However, the
improvement is saturated after certain number of
patches is selected.

The computation complexity is linearly increased
with the number of patches. Here, we let the number
of patches N,,,~60, and fix the number of postures
N,ose in the database. We compare the LSH searching
and conventional full search method as shown in Table
1. Full search will find the pose with the least error,
but the computation complexity is not acceptable.

Table 1 Error and complexity comparison.

Linear Search LSH
Avg Error(mm) 48.57 54.32
Computing Time(ms) 12780 37.01

From the estimation error of the local pose
parameters, we find that upper-joints (such as shoulder
and hip) is smaller than the lower-joints (such as
elbow, wrist). It is because of hierarchical structure of
human parts and the movement of the upper-joint is
smaller than the lower-joint. However, the error is not
reduced significantly with the increment of the number
of selected patches. Using temporal constraint does not
reduce much error, but reduce the computation
dramatically. We compare the estimation errors and
computing time of these two methods as the number of
poses increases.

We compare the performance of convention LSH
[7] and our modified LSH method in training time,
estimation time and average error as shown in Table 2.
We extract 60 patches from the test image for LSH
method. Table 2 shows that the improvement of
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precision is limited, however, the improvement of
training time and estimation time is enormous.
Because current joint estimation is based on the
previous location of the joint, the estimated pose is not
correct if there is a sudden moving direction change,

Table 2. Compare the error and complexity of LSH[7]

and our modified LSH.
Training Computing Avg Error
time Time/frame mm)
LSHJSE] 485 min 38. 71T ms 57.54
Our LSH 273 min 36.02 ms 57.54

6. Conclusion

This paper presents a human motion parameter
estimation method. First, we generate 2D posture
image and the corresponding 3D position of the joints
stored in the database. Then, we extract the local patch
which is described by shape context and then use the
modified LSH to find the example patches in the
database. Finally, we use Hough voting to find the best
matched pose and estimate the 3D joint locations.
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