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Abstract. 

This paper introduces a vision-based 
system. Motion capturing technology 
categories: model-based tracking and 
indexing. The motion capturing sys
challenges: parameter estimation in hi
space and self-occlusion. Our algorith
locality sensitive hashing (LSH) meth
approximate examples and then estim
parameters in high search space. The c
this method are proposing the modified
applying Hough voting to estim
parameters, and adding the temp
constraints to increase the prediction ac

1. Introduction 

Vision-based human body track
estimation has been simplified by the 
real-time depth camera [1∼3]. How
launch of Kinect, none ran at intera
consumer hardware while handling h
different shapes undergoing gene
motions. Most of vision-based appro
challenges: the parameter estimat
dimensional space and self-occlusion.  

The vision-based human motion ca
divided into two categories: model-bas
example-based pose estimation. Man
human tacking methods apply particle
[11,12]. Example-based method exp
labeled training examples. For human p
high-dimensional search space and 
make this method complicate. In [4, 5
estimation can be solved by using sim
for shape matching. In [6], they over
dimensional space problem by using 
Hashing (LSH) [10] for fast approx
search. In [7], a patch-based approach 
LSH is used to retrieve example patch
the pose parameters. Shotton et al. 
positions of body joints from a single d
using lots of training data, they tr
decision forest classifier. Wang et al
upper body motion capturing system
more cameras and a color shirt. They cl
regions to estimate the pose and use the
to refine the color classification iterativ
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2. Patch Database Construc

Our approach estimates the 
assembling the retrieved example 
the input local patches. We need a
these example patches generated b

2.1 3D Human Model 
Human pose can be described by 
including the 3D positions of to
shoulders, left/right elbows, le
left/right knees. Then, we divide 
Θ=(θ1,…θ10) into six local 
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torso. 

2.2 Local Patch and Shape Co
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After extracting the human silhou
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shown in Figure 1. There are 60 s
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Figure 2. (a) Input image, (b) Human
Frontal image, and (d) Augmented cont

With augmented contour, we samp
contour sparsely to extract the local pa
described by the shape context. The s
described with constant radius Rdb, ve
patch’s position to the reference poin
and the contour points observed within
the patch. As shown in Figure 3, the pa
shape which is divided into r radius in 
and θ angles in angular direction with 
shape context is converted into 2-D
which each beam represents the num
points inside the subarea. A local patch
24 subareas and described by the shape
is a 24-D feature vector. 

Figure 3. Shape Context of the local pa
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correct local pose parameter. 
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3. Nearest Neighbor Search 
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where u=(u1, …,um) and v=(v1, …,
d(⋅) is a distance measure, h is a
convert a sample point to a binary
of hash functions satisfying the 
called locality-sensitive hash func
LSH function must satisfy two co
p1>1/2. A k-bit LSH function is g(x

The samples with the same h
the same bucket called collision.
collision for similar sample points 
while the probability of collision f
is at most p2

k. Different examples a
bucket create a collision. 

3.2 Hash Function Determina
Given a sample set P={p} with p
C= Max{x1,….xd ⏐for all p∈P}, an
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TPCount is the total number of TP
whereas FPCount is the total num
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3.4 Modified LSH 
The Unary operation with large C
consuming. Unary operation may add
the component corresponding to the su
radius so that the length variation of th
each component will be huge. So, 
normalization process before Unary
reduce C by converting the shape c
patch p=(x1,….xd) to p′=(y1,….yd), with
and 0≤yi≤8. In Figure 4, an 88-bit (8+6
reduced to 24-bit (8+8+8). 

Figure 4. Normalization pro

Then, we propose a simplified U
Let xd be the dth component of x and co
stream of which the ith bit can also be
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find the hash function hd(x) for compon
function generates a binary output by 
bit of the bit stream generated by U
The i is determined by selecting 
UnaryC(xd) which generate the best tra
higher TP rate and lower FP rate.
function can be rewritten as g(x)=[h1
which hd(x)=1 if xd≥id, else hd(x)=0 for 
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use LSH indexing to extract the simil
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4.2 Hough Voting 
For each input local patch, with 
(q=1∼6), we may compute the has
corresponding similar example pa
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4.3 Prediction Constraint 
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5. Experimental Results 

specific category q 
sh key to retrieve the 
atches Ik

q in database 
cess, we assume that 
rameters in different 
dent. So we have ௤ሻ                         (4) 

al patches ܧ௤ ൌ ሼ݁௜௤ሽ 
ocal patches, we use 
hes {ܫ௞௤, ݇ ൌ 1, …   ሽܭ
ontributes votes to 
r Θi. The local pose 
as ݌ሺܫ௞௤|݁௜௤ሻ݌ሺ݁௜௤ሻ     (5) 

f estimating the local 
e retrieved example 
ei

q
) represents the 

e patches, and p(ei
q
) 

g the input patch.  
e may find multiple 
r shape context. To 
assign a weight wk to 
Ik

q
. It indicates a 

ate the local pose 
weighted vote. The 

Θi (t)− Θi (t+1) | <σ, 
number of retrieved 
ame Θi. Each input 

find the correct pose 
only. We propose a 
s the candidate pose 
ose parameter Θpredict 
the candidate pose 

5) as follows ܫ௞௤൯݌൫ܫ௞௤ห݁௜௤൯݌൫݁௜௤൯  

dหredหቇିଵ
 

er receiving enough 
constraints and Θpred  
fined as 

Θ௝ 

example patches in 
which is used for 

831



We use the commercial motion capture system to 
capture the positions and orientations of 10 joints as 
the ground truth. To create the real silhouette images 
of real human figure, we use the depth images from 
Kinect. We generate 12000 dataset images captured 
from two different human figures performing 4000 
various poses. The training set contains 8000 images, 
whereas the testing set contains 4000 images. 

 

 
Figure 5. Input images and 3D avatar. 

Figures 5 illustrates our experimental results. To 
measure the accuracy of the estimation, we compute 
the average error between the estimated joint positions 
of the ground truth as  

Avg error=Σ10
j=1 ||gj − ej||/10                  (9) 

where j is the index of the joint, gj indicates the joint 
3D position parameter of the ground truth, ej indicates 
the estimated joint 3D position parameter, and ||⋅|| is 
the Euclidian distance measure. As the number of 
input patches increases, the average error decreases 
but the computation time increases. However, the 
improvement is saturated after certain number of 
patches is selected.  

The computation complexity is linearly increased 
with the number of patches. Here, we let the number 
of patches Ninput=60, and fix the number of postures 
Npose in the database. We compare the LSH searching 
and conventional full search method as shown in Table 
1. Full search will find the pose with the least error, 
but the computation complexity is not acceptable. 

Table 1 Error and complexity comparison. 
 Linear Search LSH 

Avg Error(mm) 48.57 54.32 
Computing Time(ms) 12780 37.01 

From the estimation error of the local pose 
parameters, we find that upper-joints (such as shoulder 
and hip) is smaller than the lower-joints (such as 
elbow, wrist). It is because of hierarchical structure of 
human parts and the movement of the upper-joint is 
smaller than the lower-joint. However, the error is not 
reduced significantly with the increment of the number 
of selected patches. Using temporal constraint does not 
reduce much error, but reduce the computation 
dramatically. We compare the estimation errors and 
computing time of these two methods as the number of 
poses increases. 

We compare the performance of convention LSH 
[7] and our modified LSH method in training time, 
estimation time and average error as shown in Table 2. 
We extract 60 patches from the test image for LSH 
method. Table 2 shows that the improvement of 

precision is limited, however, the improvement of 
training time and estimation time is enormous. 
Because current joint estimation is based on the 
previous location of the joint, the estimated pose is not 
correct if there is a sudden moving direction change,  
Table 2. Compare the error and complexity of LSH[7] 

and our modified LSH. 
Training 

time
Computing 
Time/frame 

Avg Error
(mm)

LSH[8] 485 min 58.71 ms 57.54
Our LSH 273 min 36.02 ms 57.54

6. Conclusion 

This paper presents a human motion parameter 
estimation method. First, we generate 2D posture 
image and the corresponding 3D position of the joints 
stored in the database. Then, we extract the local patch 
which is described by shape context and then use the 
modified LSH to find the example patches in the 
database. Finally, we use Hough voting to find the best 
matched pose and estimate the 3D joint locations. 
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