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Abstract

Most conventional smoothing and denoising meth-
ods for color images deal with each color channel inde-
pendently, which results in discolorations due to unbal-
ancing the relation between the color components. In
this paper, we propose a smoothing algorithm to reduce
discolorations based on “color-lines”. Our iterative al-
gorithm consists of a local color decomposition step by
color-line vectors and an iterative filtering step. Our
numerical simulation shows that the method improves
image quality with less discolorations while keeping the
smoothing capability.

1. Introduction

When filtering the color image for the sake of
smoothing or denoising, generally the RGB values are
converted to a space such as YCbCr and L*a*b* so
as to separate the luma and chroma components, then
the luma component, to which the human perception
is more sensitive, is processed mainly. However, since
these color conversions are done pixel by pixel, they do
not take into account the correlation among neighboring
pixel colors. Thereby, when filtering color images, the
color correlations often become unbalanced, which re-
sults in color heterogeneity over a whole image region.

Recently as an efficient feature that represents the
correlation in the color range domain, the “color-line”
(cl) feature [5], which is defined as a line that approx-
imates the shape of color distribution in a local region
(see Fig. 1), is often used in image processing. This
phenomenon appears because natural images contain
intermediate colors on the boundary of two color re-
gions and contain the luminance variations by lights and
shadows.

Based on the ¢/ feature, [9] and our previous work
[7] remedy outliers located away from the line in order
to reduce discoloration artifact. The guided filter [4]
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Figure 1. Color-line feature.

has a similar framework and has a capability to reduce
discolorations.

In this paper, we extend our previous work [7] and
introduce a novel smoothing algorithm. Our method
improves image quality with less discolorations while
keeping the smoothing capability.

2. Algorithm Overview

The flowchart of our algorithm is shown in Fig. 2.
The algorithm mainly consists of two steps: a color de-
composition step and a filtering step, and these steps are
processed iteratively. The more detailed description of
the procedure is given as follows:

1. At each pixel, we estimate local color distribution and
set its principal axis to the ¢/ vector by using principal
component analysis (PCA) (described in Sec. 3).

Each pixel color is decomposed into (i) the ¢/ component
along the ¢/ vector and (ii) residual component perpen-
dicular to it (Sec. 4).

The decomposed color components are smoothed or de-
noised by an iterative filtering method (Sec. 5).

Finally restore the color by the inverse color transform,
then turned back to the step 1.

In this way, the filtered colors vary along each cl axis
and do not corrupt the shapes of color distributions.
However, cl vectors obtained in the early stage are
noisy, and noise reduction in the spatial domain is still
needed to the ¢/ vector itself. Therefore, we try to itera-
tively refine ¢/ vectors by the above iterative process in
the color range domain and the spatial domain.

3. Color-line vector field

The cl vector that is the axis of local color distribu-
tion is obtained by PCA, in which it is derived as the
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Figure 2. Algorithm flowchart.

eigenvector corresponding to the maximum eigenvalue.
In this section, we describe the efficient calculation for
PCA at each pixel (Sec. 3.1) and how to make the c/ vec-
tor directions lined up to remove ambiguity of the vec-
tor direction (Sec. 3.2). The method prevents the vec-
tors from irregular sign flips, which causes gaps among
their neighboring vectors, and become the interference
of the smoothing.

3.1. Calculation of color-line vectors by PCA

To find the largest eigenvalue d and the correspond-
ing eigenvector v, we use a traditional power iteration
algorithm, instead of recent analytical methods because
of the computational efficiency for the pixel-wise cal-
culation. Moreover there is little perceptible difference
between resulting images.

First a covariance matrix C; of each pixel ¢ needs
to be computed by using pixel colors I; = [r;, g;, b;]T
of the neighboring pixels j € N (i) and the mean color
H = Zje/\/(i) L as: Ci = (5 Zje/\/(i) IJTIJ') -
u? p,, where w(= 49) is the number of pixelsina 7 x
7 filter window. Then the power iteration is given as
follows:

update eigenvector: V; = Civgt)
=1
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update eigenvalue: dl(
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3. normalization: v
4. convergence check: break if |V1( )_ 1<t
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where t is the number of iterations, the initial eigenvec-
tor is set by random values normalized to be ||v(?)|| =
1. As the angle tolerance for the convergence condition,
we set 7 = 0.0001 in the experiment.

Since color pixels have correlation among its neigh-
bors, their eigen-pairs also tend to be similar in its
neighborhood. Thereby the number of iterations at a
current pixel can be reduced by setting a well converged
neighboring eigenvector to the initial eigenvector of a
current pixel. We propagate a resulting eigenvector at
a current pixel ¢ to the next adjacent pixel ¢ + 1 as the
initial eigenvector:

(0) __ _ (converged)
i+1 7 V4

ey

v

3.2. Direction alignment of color-line vectors

There is inherently an ambiguity in the sign of the
eigenvectors s;v;, where s;(= +1 or — 1). In order to
determine the sign of each vector v; that minimizes the
energy function among neighboring pixel pairs {4, j}:
2oty l1sivi—s;vi] 2, we adopt the following Jacobian
relaxation method [1]:

>

€N (p),a#p

(st )

5;()t+1) = sign( p Vp)T(Sff)Vq)),

where ¢ € N (p) is 3 x 3 neighboring pixels of a pixel p.
The sign s, of the pixel p is determined so as to fit the
dominant direction of neighboring vectors by using the
inner products as the criterion. In practice, we calculate
the summation in Eq. 2 by {(s\"v,)T Zq(s((f)vq)} -1
with the use of box filtering for the acceleration.

The above relaxation method is only effective for
pixel-wise flip. In order to flip signs over a large re-
gion, we use a multiresolution approach like the multi-
grid’s V-cycle [1] as shown in Fig. 3, where the sign-
aligned vectors {s;v;} are propagated to coarser reso-
lutions, and then the resulting signs {s;} are propagated
to finer resolutions.

For generating the multiresolution pyramid for vec-
tor and sign images in Fig. 3, we use the gaussian pyra-
mid decomposition [2]. Additionally, in the decimation
process, for the purpose of giving the priority to pixels
around edges which have large eigenvalues, we multi-
ply the eigenvalue d; as the weight for the pixel: d;s;v;,
then apply the decimation filter and re-normalize the
half-sized vector field. The multiresolution eigenvalue
images are generated by the same approach of the gaus-
sian pyramid.

4. Local color component decomposition

The color of each pixel I; is locally decomposed into
the ¢l component D; along the ¢/ axis, and the residual
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Figure 4. Color decomposition.

component /V; perpendicular to it, which corresponds
to detail and noise components, respectively, as shown
in Fig. 4.

The ¢l component is given as the inner product of
the normalized ¢l vector v; and the difference vector
AIl = Ii — M

D; = vl AL. 3)

The residual component is obtained as the Ly norm of
the residual vector r; = (AI; — D;v;):

N; = [|ri]|. “)

The composition is done by the following equation
after filtering is applied to two color components D; and
N, i

— T
N;j—.
[ |

L = p; + Dyvi + (5)

5. Filtering and noise reduction

Filtering for ¢/ component. For filtering the ¢/ com-
ponent given as a gray scale image, we adopt a con-
ventional iterative filer. Since the smoothing capability
of non-iterative filter such as conventional linear low-
pass filters or median filters is too strong, the iterative
version such as anisotropic diffusion is more appropri-
ate in our framework. The “iterative version” iteratively
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solves an original filter equation, such as the diffusion
equation for the anisotropic diffusion, which is an iter-
ative relaxation method corresponding to the gaussian
filtering based on direct convolution method. In brief,
we smooth or denoise an image iteratively until one can
obtain desired filtering effect. In the experiment of this
paper, we use an anisotropic diffusion [8] as the iterative
version of the bilateral smoothing filter, and use pow-
erless BM3D [3] as the iterative version of the Color
BM3D denoising filter [3].

Noise reduction for residual component. The residual
component is also given as a gray scale and it is filtered
with our noise reduction filter. To reduce noises with
small intensities , we first apply Geman McClure robust
function w(x) = 2?/(k + 2?), and add the weight as
N; = w(N;)N; (we set £ = 0.022). On the other hand,
to remain low frequency components with large intensi-
ties, we use the 3 x 3 median filter for smoothing them.

6. Experimental results

The results of our method are shown in Fig. 5. For
comparison, we use Tschumperlé’s anisotropic diffu-
sion [8] and Color BM3D [3] as applications of the
smoothing and the denoising respectively. These im-
ages illustrate, (a) original image, (b) noisy image with
additional gaussian noise, (c) result of conventional
method, and (d) our iterative method with 4 iterations.
In addition, PSNRs are shown below the images for the
numerical evaluation , also AEs [6] are shown as a per-
ceptual criteria (the smaller, the better). The parameters
of the conventional methods are adjusted so as to give
the best evaluation values, while in our method, we set
parameters of the conventional methods so as to give
the similar evaluations.

From the results of the anisotropic diffusion, one can
see our method is able to reduce the discoloration arti-
facts more and can confirm the validity of the method in
the both appearance and numerical evaluations. While
from the results of BM3D, the differences at a glance
are quit little, and our numerical evaluations are slightly
inferior. However, the original BM3D tends to produce
discolorations especially in smoothly varying gradation
as one can see in the 4-th row of Fig. 5. Our method sig-
nificantly reduces discolorations and improves percep-
tual appearance. Although the difference of evaluation
values comes from the remaining noises around edges
in our method, human perception is insensitive to these
noises.

7. Conclusion

In this paper, we present a discoloration reduction
algorithm with the color-line consideration. Using our



/i

(b) Noisy (24.40/ 10.69)

(a) Original (PSNR / AE)

(a) Original (PSNR / AE)

(b) Noisy (24.43 /10.16)

(b) Noisy (24.42/6.41)

Denoising by the Color BM3D [3] an

(¢) Diffusion

d th

(c) CBM3D (34.07 / 2.26)

(c) CBM3D (39.92/1.04)

e BM3D with our algorithm

Smoothing by an anisotropic diffusion [8] and with our algorithm

(28.97/6.32) (d) Ours (29.53 / 4.65)

/

(d) Ours (32.38/2.82)

(d) Ours (40.41/0.91)

Figure 5. Comparison of smoothing and denoising performance of conventional methods [8, 3].

algorithm in combination with conventional methods,
the perceptual looking is improved. As for the algo-
rithm, the efficient PCA and the vector direction align-
ment method are mainly described, as the improvement
from our previous work.
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