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Abstract 
 

Speech has been recognized as an attractive method 
for the measurement of cognitive load. Previous 
approaches have used mel frequency cepstral 
coefficients (MFCCs) as discriminative features to 
classify cognitive load. The MFCCs contain 
information from both the voice source and the vocal 
tract, so that the individual contributions of each to 
cognitive load variation are unclear. This paper aims 
to extract speech features related to either the voice 
source or the vocal tract and use them to discriminate 
between cognitive load levels in order to identify the 
individual contribution of each for cognitive load 
measurement. Voice source-related features are then 
used to improve the performance of current cognitive 
load classification systems, using adapted Gaussian 
mixture models. Our experimental result shows that the 
use of voice source feature could yield around 12% 
reduction in relative error rate compared with the 
baseline system based on MFCCs, intensity, and pitch 
contour.  
 
 
1. Introduction 
 

Cognitive load (CL) refers to the amount of mental 
demand imposed on the human cognitive capacity 
when performing a particular task [1]. Measuring 
cognitive load, or classifying along an ordinal CL 
scale, is important in designing an optimal interaction 
approach between humans and computing systems in 
order to produce the highest task performance. Speech 
has been recognized as a good approach for CL 
measurement due to its non-intrusive and inexpensive 
attributes as a system input. Several types of speech 
features, e.g., mel-frequency cepstral coefficient 
(MFCC), pitch, intensity, frequency modulation, and 
group delay, have been proposed to classify cognitive 
load, of which the most successful individual feature is 

MFCC [2, 3]. In linear acoustic theory, the speech 
production process is described in terms of the voice 
source excitation and vocal tract filter (Fig. 1), and 
information from both of these components is present 
in MFCCs. To date, the cognitive load discrimination 
due to the voice source and the vocal tract filter has not 
been established. 
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Figure 1. The speech production model 

 

In our recent study [4], we analyzed the cognitive 
load discrimination due to features extracted in 
different frequency bands of speech, and showed that 
features derived from bands from 0 to 800 Hz 
significantly outperform those from the other bands. In 
this range the voice source spectrum contains high 
energy, and we hypothesize that features from the 
voice source are important for cognitive load 
classification.  

When voiced speech is generated, the voice source 
can be characterized by the glottal waveform, and 
glottal waveform-derived features have recently been 
reported in emotion, deceptive/non-deceptive, and 
clinical depression classification systems [5]. 

In this study, we extract speech features related 
specifically to the voice source and the vocal tract filter 
and evaluate their performance in a UBM-GMM 
cognitive load classification system [3], both 
individually and combined using fusion. 
 
2. Cognitive load classification system 
 

2.1. Source and filter separation  
 

Based on the linear acoustic model of Fig. 1, the 
Iterative Adaptive Inverse Filtering (IAIF) algorithm 
was proposed to estimate the glottal waveform of 

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1097

4496

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1097

4524

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1097

4516

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1097

4516

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1097

4516



speech signal by filtering the original speech signal 
using an inverse model of the vocal tract filter, 
modeled as an all-pole system. The detailed description 
of the IAIF algorithm can be found in [6]. In our study, 
IAIF is used to estimate both the glottal waveform and 
all-pole model parameters for the vocal tract filter in 
isolation. The integration of IAIF into our feature 
extraction and CL classification system is illustrated in 
Fig. 2. 
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Figure 2.  Cognitive load classification system 
 

2.2. Source and filter feature extraction 
 

The input speech is segmented into 25 ms length, 15 
ms overlapped frames. The unvoiced frames are 
detected and removed using voiced activity detection 
(VAD), which detects unvoiced frames based on the 
result of pitch estimation. Three sets of speech features 
are then extracted from each frame of voiced speech:   

Mel Frequency Cepstrum Coefficients (MFCCs); 
12 MFCCs are extracted from 29 mel-scale filters in 
the 0-8 kHz range (excluding the zero order MFCC).  

Source Mel Frequency Cepstrum Coefficients 
(SMFCCs); The computation of SMFCCs follows 
exactly the same steps as for computing MFCCs, 
except that the input is the glottal waveform output by 
IAIF rather than the speech signal. 

Filter Mel Frequency Cepstrum Coefficients 
(FMFCCs); The spectral envelope of the vocal tract 
filter is evaluated from the linear predictor coefficients, 
obtained from the implementation of the IAIF. Twelve 
FMFCCs are then obtained as the first 12 output 
coefficients (excluding the zero order) of the discrete 
cosine transform of the logarithm of 29 mel-scale filter 
energies, derived from the magnitude response of the 
linear predictive filter.  

The MFCC parameterization was chosen to 
describe the glottal waveform and the vocal tract filter 
in our study because the direct comparison of accuracy 
between SMFCCs, FMFCCs, and (speech) MFCCs 
may lead to a more straightforward comparison 
between the intrinsic cognitive load discrimination 
power due to the source and filter features. 
    
2.3 Dynamic features 

 

All feature vectors mentioned above are static 
features, i.e., each feature element only represents the 
feature data at exactly the point of calculation. In this 
study, the SDC technique is used to capture the 
temporal evolution of MFCC, SMFCC and FMFCC 
feature vectors, as it has been used with success in CL 
classification previously [3], and allows control over 
the temporal duration of the dynamic features. 

Mathematically, SDC feature vectors are computed 
from the original static feature vector as  

   FSDC(t)=conc(c(t+iP+D)-c(t+iP-D))i=0→k ,          (1) 

where t is the time (frame number) when SDC is 
computed; conc(.) is the concatenation operation; c is 
the original static feature vector; and D, P and k are 
parameters of SDC. In our study, D = 3, P = 3, and       
k ∈[0, 7].  

Feature warping is utilized in this paper to map the 
distribution of the feature vectors over each utterance 
to a distribution with zero mean, unit variance. 
 
2.4 Classification  
 

A UBM-GMM based classifier [7] is used as the 
back-end of the classification system in this paper. 
Each cognitive load level is modeled as a Gaussian 
mixture model (GMM). A GMM UBM (Universal 
Background Model) is trained based on the normal 
speech of all speakers for a set of reading tasks. The 
speech features of each cognitive load level are then 
used to adapt this UBM to obtain CL models using the 
maximum a posteriori (MAP) technique [7], illustrated 
in Fig. 3. The sufficient statistics from the training data 
of a cognitive load level are used to update the UBM 
sufficient statistics for a particular mixture, creating 
adapted parameters on a per-mixture basis. For 
instance, the adapted mean of the ith mixture ( iμ̂ ) is 
obtained from the ith UBM mixture mean ( iμ ): 

              ( ) ( ) i
m
ii

m
ii xE μααμ −+= 1ˆ ,                (2) 

where ( )xEi  is the mean parameter computed from the 
probabilistic alignment process of the training vectors 
into the ith UBM mixture, and m

iα  are the adaptation 
coefficients. m

iα  are data-dependent, so mixtures with 
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a high count of data from the cognitive load-specific 
training rely more on the new sufficient statistics 
( 1→m

iα , c.f. long arrows in Fig. 3) and mixtures with 
low counts of data rely more on the UBM sufficient 
statistics ( 0→m

iα , c.f. short arrow in Fig. 3). 
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Figure 3. Conceptual diagram showing adaptation of a 

high cognitive load model from a UBM  
 

In the testing phase, features extracted from test 
speech are used to determine the likelihood scores 
from the GMMs. The classification result is then 
obtained as the best matched model (maximum log-
likelihood score LL). The number of mixtures of the 
UBM and all GMMs in our study is 256. In order to 
improve the reliability of the results, all experiments in 
this paper were performed in a leave-one-out cross-
validation fashion where data from speakers appearing 
in the test data were not present in the training data.  

 
2.5 Score-level fusion 
 

A linear search fusion technique was employed to 
combine the log-likelihood scores of individual 
classifiers based on different features. Fusion allows us 
to investigate the complementary behavior of SMFCC 
and FMFCC in characterizing the cognitive load 
variation. The fused log-likelihood score was obtained 
from the linear combination of log-likelihood scores 
LL1 and LL2 from two individual systems as follows: 

             ( ) 21 1 LLLLLLfused αα −+=               (3) 

where fusedLL is the fused log-likelihood score, and 
10 ≤≤ α  is the weighting coefficient empirically 

chosen to optimize the performance of the system. 
 
3. Evaluation 
 

3.1 Database 
  

All experiments in this paper were performed on 
the Stroop test corpus, containing speech elicited under 
three levels of cognitive load (low, medium, and high) 
from 15 native English speakers (8 females and 7 
males) performing the Stroop test [3]. The low CL task 
required subjects to read the color name of words 
written in black or congruent font color (font color is 

same as color word). The medium CL task required 
them to read the font color of words in incongruent 
color (font color is different with color word). The high 
CL task was the same as for medium CL, except that a 
time constraint was added. The database contains 
approximately 60 seconds of speech per cognitive load 
level per speaker. We also used story reading speech 
(low CL, 90 sec per subject) collected from the same 
subjects to train the UBM. 
 
3.2 Results: Static features 
 

SMFCCs, FMFCCs and MFCCs were individually 
used to classify CL, in order to evaluate the CL 
discrimination of speech features related to the voice 
source and vocal tract filter. The classifier results from 
systems based on different feature sets were then fused 
in pairs to investigate their complementary properties. 

It is evident from Table 1 that significant cognitive 
load information is captured by both SMFCCs and 
FMFCCs. This suggests that cognitive load variation is 
characterized by both the voice source and vocal tract 
filter components of the human speech production 
model. However, it is interesting to notice that the use 
of SMFCCs yields higher accuracy than that of 
FMFCCs alone, suggesting for MFCC features, the 
voice source is marginally more important than vocal 
tract filter in terms of cognitive load variation. 
 

Table 1. Cognitive load classification accuracy                                   
for static source and filter feature vectors 

                System Accuracy (%) 
SMFCCs  45 
FMFCCs  43 
MFCCs 50.4 
Fusion SMFCCs & FMFCCs 49.4 
Fusion SMFCCs & MFCCs 54.5 
Fusion FMFCCs & MFCCs 50.6 

 

The use of MFCCs produced higher accuracy than 
SMFCCs or FMFCCs alone, probably because MFCCs 
capture information related to both voice source and 
vocal tract filter. This result is confirmed by the 
expected result that the fusion of scores based on 
SMFCC and FMFCC features produces approximately 
the same accuracy as that for MFCCs alone. The fusion 
between SMFCC and MFCC based systems admits a 
further improvement of classification accuracy over 
MFCCs, which seems to suggest that MFCCs do not 
completely capture the discriminatory information 
relating to cognitive load from the voice source. 

 
3.3 Results: Dynamic features 

 

Dynamic features, based on SMFCCs, FMFCCs, 
and MFCCs obtained using the SDC technique with 
various values of k, were used to classify cognitive 
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load in order to evaluate the cognitive load 
discrimination ability of temporal information. 
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Figure 4. Cognitive load classification accuracy (%)  
using SDC feature vectors with various value of k 

 
It can be seen from Fig. 4 that SDC significantly 

improves the performance of all classification systems, 
as in [3]. Increasing k convincingly improves 
classification accuracy, as more temporal information 
is captured when k increases, but perhaps surprisingly 
so given the high feature dimension of SDC relative to 
the small database used herein. For all values of k, 
among systems based on individual feature sets, the 
MFCC based system always yielded the highest 
classification accuracy which again confirms that 
MFCC captures CL discriminative information related 
to both voice source and vocal tract filter. Fusion 
between SMFCC and MFCC based systems generally 
yielded an increase in accuracy over any individual 
system, although the benefit over MFCCs declines as 
the overall accuracy increases. Accuracy 
improvements for the source and filter features when 
more temporal information is included may be smaller 
than those of the MFCCs due to the differing effects of 
the IAIF algorithm from one frame to the next. Our 
further experiments with k>7 show that the accuracy of 
the classification systems saturates at around k=7.  

 
3.4 Results: State of the art baseline 

 

To confirm the effectiveness of the voice source 
related features in discriminating cognitive load, the 
classification result of our SMFCC based system, 
employing SDC with k=7 was fused with that of the 
baseline system developed in [3]. The accuracy of the 
baselines system is 78.1% where the discriminatory 
feature vectors were SDCs (k=7) computed on a 
combination of pitch, intensity, and MFCCs. Fusion of 
this baseline with the SMFCC, k=7 system reported 
herein produced an accuracy of 80.8%, again 

suggesting that voice source related features can be 
used to improve the CL classification accuracy.  

 
5. Conclusion 
 

This paper has presented an investigation of the 
cognitive load discrimination ability due to voice 
source and vocal tract filter related information 
individually. The results of our study have partly 
validated the hypothesis that voice source related 
features are important in discriminating cognitive load 
level, as suggested by [4]. Incorporating more 
information from the voice source therefore has 
potential to improve the performance of current 
cognitive load classification systems, many of which 
exploit discriminative information mainly from the 
vocal tract filter. Future work will investigate features 
derived principally from the low-frequency 
components of the voice source. 
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