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Abstract—Anomaly detection has received much attention
within the literature as a means of determining, in an un-
supervised manner, whether a learning domain has changed
in a fundamental way. This may require continuous adaptive
learning to be abandoned and a new learning process initiated
in the new domain. A related problem is that of anomaly
rectification; the adaptation of the existing learning mechanism
to the change of domain. As a concrete instantiation of this no-
tion, the current paper investigates a novel lattice-based HMM
induction strategy for arbitrary court-game environments. We
test (in real and simulated domains) the ability of the method to
adapt to a change of rule structures going from tennis singles
to tennis doubles. Our long term aim is to build a generic
system for transferring game-rule inferences.

I. INTRODUCTION

There is a well-established requirement for treating
anomalies in machine learning. Artificial cognitive systems,

in particular, should be able to autonomously extend capabil-

ities to accommodate anomalous input as a matter of course
(humans are known to be able to establish novel categories

from single instances [5]). Typically, the anomaly detection
problem is one of distinguishing novel (but meaningful)

input from misclassification error within existing models

i.e. by defining a new learning domain. By extension, the
treatment of anomalies so determined typically involves the

attribution of suitable class designators to the novel input,

along with an appropriate method for extending (i.e. general-
izing) this categorization. The composite system should thus

be capable of inferring novel representations — ‘bootstrap-

ping’ — via the interaction between the bottom-up processes
of anomaly detection and the top-down processes of novel

object categorization. Such composite techniques have been

applied, for example, to the problem of segmentation [2].
Often, bottom-up description will also explicitly consider

context, rather than specific objects of classification interest

as means of generating high-level domain description [4],
[3].

In this paper we consider anomaly rectification in the con-

text of sporting events, focusing on Markovian modeling of

anomalous high-level (i.e. abstract, rule-like) state transitions
such that the inference system must detect how the rules

of game-play should change. As a test-bed for this idea,

we start with a system trained on ‘singles’ tennis matches,
and then change the input material for doubles tennis

matches. On the assumption that a suitable detection system

has already flagged the gameplay anomaly and collected
suitable quantities of data in the newly defined domain,

the problem then is to adapt the existing rule structure

accordingly. We define our approach in terms of observed

state transition probabilities defined in the two different
rule domains, initially testing the method on simulated state

transition data and later on testing on real data deriving

from an existing system that employs court line detection,
homography, player/serve detection, and ball detection via

tracklet propagation for singles tennis annotation [1], [6].
In the following section we discuss the problem formu-

lation, with bootstrapping mechanisms described in Section

3. An experimental validation on real and simulated data is

given in Section 4; Section 5 concludes.

II. ANOMALY RECTIFICATION

The tennis annotation system described in [1], [6] does
not identify individual players, so that scoring is primarily

determined via ball movements with respect to designated

play areas; these are the play area (PA), near play area
(NPA), far play area (FPA), ball out area (BO, subdivided

into BO1, BO2) and near/far serve areas (NSA, FSA). Each

of these areas is associated with a 4-tuple box designa-
tion, b, given in terms of the ordered set of horizontal

and vertical screen lines, H = {(h1, h2, . . . hnh
)} and

V = {(v1, v2, . . . vnv
)}. Thus b ∈ {(hα, vα, hβ , vβ)}, with

hα, hβ ∈ H and vα, vβ ∈ V . Applying the constraint

vα < vβ and hα < hβ , each box has a unique b designated in
terms of its bottom left and top right corner coordinates; i.e.

(hα, vα) and (hβ , vβ). The complete set of boxes {b} forms

a lattice, having joins (also known as least upper bounds or
suprema) and meets (also known as greatest lower bounds or

infima) analogous to intersection, union and complementa-

tion etc in set theory1. This allows for complex relationships
between designated play areas, e.g. overlaps and subset

relations (such as PA/FPA=NPA). This notion of a lattice

clearly generalizes to any other rectilinear court structures
such as those of badminton (and indeed our method as a

whole is intended to generalize to any such domain, so that
learning-transfer is possible between superficially different

game types). From this perspective, the distinction between

singles and doubles tennis is characterized by a change in
definition of the play area (PA); (PA → bo) → (PA → bn)
with bo, bn ∈ {(hα, vα, hβ , vβ)}. As a step towards a fully

general sport-rule annotation induction system capable of
transferring learning from one domain to another, our aim

is to detect this transition and thereby identify both the old

and new play area definitions i.e. bo and bn.

1A set equipped with a partial order relation for all elements is automat-
ically a lattice if this relation is reflexive, antisymmetric and transitive.
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This situation is made inherently complex by the fact
that ball state transitions in terms of which the high-level

game description is given (e.g. SA → PA → BO for a

typical serve) are not directly observed. Instead, we see
only transitions in the occupancies of the various boxes

within the lattice (e.g. b1 → b2 → b3 ) to which they
correspond, such that the high-level state space can be

regarded as the hidden states of a Hidden Markov Model

(HMM). Moreover (making this analogy exact), we find
that the transition structure is inherently ambiguous within

the observable state space because of the possibilities of

inclusion and intersection within the lattice. We will thus in
general have a large set of box transitions within the lattice

(e.g.{(b1 → b2 → b3), (b5 → b8 → b3), . . .}) consistent

with any given sequence of key play areas. The task of
determining which high-level play area has undergone re-

definition in the transition from singles to doubles gameplay

requires that we obtain a method for treating this ambiguity.
We do this via a Minimum Description Length (MDL)-

like approach in which we favor the smallest parametric

change (e.g. the single transformation (key area → bA) →
(key area → bB) required to bring-about the appropriate

high-level re-description of the game mechanics (key areas
being the main rule-designated areas of play). Note that key

area transitions in an arbitrary court game can be between

any boxes of any size, for instance a transition that goes from
the serve area (SA) to the far play area (FPA) is generally a

transition from an area of 1 ‘court unit’ to an area of several

court units in size (if a court unit is the smallest delineatable
region defined by the court lines).

Consistent with a fully-unsupervised approach, we will

initially assume no prior knowledge of the injective map-
ping P → {b} where P is the set of play areas

P = {PA, NPA, FPA, NSA, FSA, BO1, BO2} and b ∈
{(hα, vα, hβ , vβ)} (i.e. we will not assume knowledge of
even the initial single play areas). However, for the pur-

poses of experimental application, we will later relax this

assumption in order to recast the approach as one of learning
transfer (which can be treated as a subset of the above

problem).

III. METHODOLOGY

We assume that game play can be modeled via an HMM in
which the hidden states are the rule-designated play areas P
and the emission states are the least elements of the lattice

P (i.e. the ‘smallest’ indivisible boxes of the court such
that b ∈ {(hα, vα, hα+1, vα+1)}. The game play is thus

described by key points of the ball’s trajectory (serves, hits

and bounces) which are described by the system as having
occurred at a particular time within one of these ‘small’

(i.e. indivisible) court units. An HMM-based game-play
description of this kind is sufficient to enable the existing

hardwired tennis annotation system to provide accurate score

annotation of singles games.

Within such a Markovian framework we consequently
assume that there exists a transition probability matrix

MP (Pin,Pout) describing the probability of transition be-

tween key play areas. In particular, this matrix is sufficient
to capture the notion that a certain fraction of the serves will

be returned, with the remainder resulting in either a point

award (i.e. FPA → BO) or an ‘out ball’ (i.e. SA → BO).
The returned balls will either go out, be awarded a point

or enter into a further rally recursion, with some particular
probability captured by the matrix MP .

In addition to this matrix, game-play characterization also

requires the injective mapping f(P) → {b} that gives the
actual definitions of the play areas (f is thus the mapping

between the key-area labels and the corresponding boxes
within the lattice). Consequently, the transition from singles

to doubles tennis gameplay may be characterized by a

transition from this mapping to some other specific mapping
i.e. f → f ′ (i.e we assume that the basic gameplay structure

remains the same in terms of the key-area transition prob-

abilities, with only the mapping into the lattice undergoing
change) . In our later simulation of the single to doubles

transition, only a single element of this mapping (relating

to the play area) will undergo change: i.e. (PA → bo) →
(PA → bn) where bo is the old play area and bn is the new

play area, with bo, bn ∈ {(hα, vα, hβ, vβ)}.

However, the only evidence for this transition in the

definition of play area (PA) that we are presented with is

in terms of the observed matrix of box transitions defined
over the entire lattice M(b1 ∈ {b}, b2 ∈ {b}) (note that

M is the histogram of lattice transitions for a given set of

play sequences, rather than a true row-normalized transition
matrix like MP ). A change to the transition matrix MP can

thus only be detected by compiling multiple observations
in the differing domains (resulting in e.g. a singles tran-

sition matrix, M s, and a doubles transition matrix, Md).

However, even with sufficient sampling of M s, we do not
directly know which play-area box-mapping has undergone

transition, since in general a large fraction of other boxes in

the lattice will experience correlated activity as a result of
the transition. In order to determine precisely which key area

redefinition has taken place our first goal is thus to determine

the matrix transform, T , parameterized by the key play-area
transform, (bo → bn), that brings about Md i.e. we require

a T such that T (M s, bo, bn) = Md.

Without further analysis, it is not clear a priori that this is

a well-posed problem, in the sense that the transform may be

non invertible if the resultant matrix Md = T (M s, bo, bn)
loses information about the individual lattice components

bo, bn. In addition to this difficulty, we also have the po-

tentially inadequate sampling of the probabilities in the un-
derlying Markovian play-area transitions of MP manifested

in M s and Md. We therefore seek instead to minimize the
residual of the parameterized transform T (M, bA, bB) with

respect to Md, rather than directly inverting it:

(best
o , best

n ) = argmin
(bA,bB)

[

D(T (M s, bA, bB), Md)
]

(1)

where D is an appropriate distance measure (see below);
the superscript est denotes the estimated lattice value. The

transform T , itself, is derived as follows:
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The aggregate ’ball-event activity’ associated with any
given box b in the lattice can be separated into ’into’,

M(., b), and ’out-of’, M(b, .) transition components. We

can also define a coarse aggregate activity measure A(x)
by summing over all of the observed transitions into and

out of the box x for every single box within the lattice

A(x) = Σ
|b|
m=1(M(x, m) + M(x, b)) (2)

The rationale for doing so is we can thereby obtain an
approximate means for estimating the effect of redefining a

key area (e.g. (PA → bo) → (PA → bn)) by translating

the activity associated with a box bo to bn: i.e. such that
Anew(bn) = A(bo). However, it is not simply the case that

we can transfer activity in this way without also explicitly

considering interactions within the lattice structure.
A measure of this lattice interaction can be defined in

terms of the proportional overlap of one box with respect to

another. The expectation of the coarse activity measure A
in box b1 due to activity in box b2 for uniformly distributed
ball events is thus:

E[A(b1|b2)] = |b1∩b2|
|b2|

.A(b2), |b| = (hα − hβ)(vα − vβ)

This is also true for both the ’into’ and ’out of’ of activity

components (thus, for example, given an isolated ’into’

component M(., b), we expect a second, potentially over-

lapping, box b′ to have an ’into’ component
|b′∩b|
|b| M(., b)).

Consequently, to a first order of approximation, the play area
redefinition (PA → bo) → (PA → bn) has the effect on the

matrix M of subtracting a ‘lattice interaction’ matrix, Msub,
that removes activity attributable to box bo, while adding

another lattice interaction matrix, Madd, that displaces this

activity to box bn. Hence:

M
(o,n)
add (x, y) = M(x, bo)E[A(y|bn)]+M(bo, y)E[A(x|bn)]

M
(o,n)
sub (x, y) = M(x, bo)E[A(y|bo)] + M(bo, y)E[A(x|bo)]

That is, we obtain Madd and Msub by multiplying all

‘into’ and ‘out of’ transitions of the box in question by the
expected overlap of activity. To the first order, the transform

T can, thus, be approximated by:

T (M, bo, bn) = M(., .) + M
(o,n)
add (., .) − M

(o,n)
sub (., .)

However, this does not take into account the fact that
activity in bo and bn have a certain likelihood of influencing

each other at the outset; i.e. we cannot say that all of the

activity in M attributable to bo should be transferred to bn.
Moreover, we cannot say that all activity in bo is attributable

specifically to bo; it could equally apply to an intersecting

box. We therefore introduce a free parameter representing
the appropriate proportion of activity to transfer for inclusion

within the optimization i.e. we specify:

T (M, bA, bB, γ) = M(., .)+γ(M
(A,B)
add (., .)−M

(A,B)
sub (., .))

such that the optimization function becomes:

(best
o , best

n ) =

argmin
bA,bB

[

argmin
γ

D(T (M s, bA, bB, γ), Md))

]

(3)

The ready optimisability of the above equation lies in the
fact that the matrices M s and Md are essentially sparse

when the effects of lattice interaction are removed from

consideration, with occupancy dictated by the size of the
game-play transition matrix, MP (P ,P) (i.e. P×P ), rather

than the size of the lattice transition matrix, |b|×|b|. We can
thus regard M as a convolution of the individual components

(gi
x, gi

y) of MP (f(P), f(P)) with an activity ‘point-spread

function’ E[A(x|gi
x)].δ(y − gi

y) + E[A(y|gi
y)].δ(x − gi

x).
The full optimization function for the transform, using

an activity-normalized RMS (root mean square) residual

difference measure, is thus:

(best
o , best

n ) = argmin
bA,bB

[

argmin
γ

RMS((Md−

(M s + γ(M
(A,B)
add − M

(A,B)
sub ))) ◦ Mnorm)

]

(4)

where the normalization matrix is defined

Mnorm(a, b) =

(

|ha
α−ha

β |.|v
a
α−va

β |.|h
b
α−hb

β |.|v
b
α−vb

β |

(|h1−hnh
|.|v1−vvh

|)2

)−1

.

(◦ is the Hadamard product).
The above optimization is still based on finding a single,

optimal substitution bo → bn; however, denoting this opti-
mization O(pest

o , pest
n ), it can be seen that a fully general

optimization function for arbitrary matrix transforms, Ogen,

can be obtained by concatenating sequences of individual
box redefinitions:

Ogen(M1, M2) = Σm
b=1O(b2m−1, b2m) (5)

However, in this case it is necessary to balance the

allocation of parametric freedom (essentially governed by
|m|) with the cumulative RMS residuals. This requires an

empirical cross-validation or a priori MDL-like criterion to

accomplish. Such a generalization of the current approach
could potentially transfer learning from tennis to badminton,

since much of the serve/return game-play structure is con-
sistent between the two, with only the court area definitions

differing between them.

IV. EXPERIMENTAL RESULTS

We simulate a simplified tennis game by choosing

MP (P ,P) with the following transition probabilities (we

omit NPA and FPA transitions to give a single-box lattice-
transformation problem):
p(NSA → PA) = .9, p(NSA → BO1) = .1, p(PA → PA) = .2

p(PA → BO1) = .7, p(PA → BO2) = .1, p(others) = 0

i.e. we capture the possibility that a serve may or may
not be returned; a low rally probability is also included. We

also have the following ordered 4-tuple play area definitions

for simulated ‘doubles’ play (omitting center lines for sim-
plicity):
NSA → (1, 1, 3, 2), PA → (2, 2, 5, 5)

BO1 → (1, 5, 6, 6), BO2 → (1, 1, 6, 2)

For 100 simulated serves this generates the lattice transi-
tion matrix depicted in Figure 1 (left).

Singles play is simulated (in this simplified scenario) by
changing the PA key area description to (PA = (3, 2, 4, 5))
and keeping all the remaining values. This represents the
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Figure 1. Gray-scale histogram of Singles (Ms , left) and Doubles (Md , right)
transition counts over the lattice (ordered by box size and count-number, respectively).

fact that the ‘tram-lines’ are no longer part of the legitimate

play area, so that any ball bouncing in this area is not
automatically out. The resulting lattice transition matrix

depicted for observations of 100 simulated serves is depicted

in Figure 1 (right).
Carrying out the optimization in Equation 4 by consider-

ing all possible transitions (PA → best
o ) → (PA → best

n )
and iterating over γ, we obtain an estimate of this game-

play area redefinition. (Note that for the transfer learning

problem, we need only consider the redefinitions of known
play areas such that the search space is of size |P| rather

than |b|, i.e. b ∈ f(P) ).
A general performance metric for proposed play-area

redefinitions of this type can be obtained by taking the total
ordinal difference between proposed and actual transitions.

Thus, for a ‘ground-truth’ box redefinition:
PA(ha

1 , v
a
1 , ha

2 , v
a
2 ) → PA(ha

3 , va
3 , ha

4 , v
a
4 )

and a proposed box redefinition supplied by the optimization

method:
PA(hp

1, v
p
1 , h

p
2, v

p
2) → PA(hp

3, v
p
3 , h

p
4, v

p
4)

We have:

Error =
(

1
max(Error)

)

Σ4
x=1|h

a
x − hp

x| + |va
x − vp

x|

Figure 2 (left) thus gives the resulting average prediction

error for a given number, x, of complete Markov chains
obtained by Gibbs sampling of the indicated singles and dou-

bles play area transition matrices (with error bars given by

the standard error of mean determined from 20 samples). It
may be observed that x ≈ 10 complete gameplay sequences

is sufficient to identify the play area redefinition involved

in transiting from singles to doubles for the specified game
parameters.

We also test on real data derived from the Toray Pan
Pacific Open 2009 womens singles match between M. Ry-

barikova and A. Radwanska with a total of 58 Playshots

with 58 Serves, giving 343 events in total (excluding hits)
and 285 Bounces. Doubles play is simulated by multiplying

the baseline (x-axis) by 1.33 (centralized at the court centre)

so as to extend the legal play into the tram-lines. We fold
the court along it’s symmetric x and y axes around the

court center to provide better statistical sampling (generating
a lattice of 36 elements) and also introduce a weighting

proportional to the physical size of of court box to ensure the

validity of the ’within box’ uniform distribution assumption
as far as possible. For this, we use the following horizontal

and vertical ordinate values:
horzontalLineSet = [40, 100, 127, 208, 289, 316, 376];
verticalLineSet = [-10, 50, 158, 284, 410, 518, 578];

In the above experiment the method returns the estimated
transform (in the folded coordinate system):

(PA → (2, 3, 4, 4)) → (PA → (2, 2, 4, 4))
That is, the system has correctly identified the original

play area and made a correct identification of its redefinition

(differing in no ordinate values); a residual graph is given

in figure 2 (right). The method is hence sufficiently robust
to accommodate any systematic deviations from uniformity

in the play sequence distribution.
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Figure 2. Left: Mean prediction error of simulated game area transformation for
a given number of complete singles/doubles serve sequences (x-axis), Right: RMS
residual over bB for bA =play area.

V. DISCUSSION AND CONCLUSIONS

We set out, within the context of sport video annotation, to
address the problem of anomaly rectification; the adaptation

of an existing learning mechanism to a change of domain.
Consequently, we proposed a novel HMM induction strat-

egy tuned for court-game environments that maps ‘hidden’

gameplay states into a court lattice using a deconvolution-
like strategy. The system was able to correctly determine

transitions in the definition of a play area on both real and

simulated data. When extended to accommodate arbitrary
numbers of play-area redefinitions, it is intended that the

system will be coupled with an anomaly detector in order

to build a generic system for sport annotation and learning
transfer. Acknowledgement: The research leading to these results has received

funding from the EC 7th Framework Programme FP7/2007-2013 under grant agree-

ment no 215078. We also gratefully acknowledge the support of EPSRC through grant
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