
Adaptive Incremental Learning with an Ensemble of Support Vector
Machines

Marcelo N. Kapp, Robert Sabourin
École de technologie supérieure
{kapp,rsabourin}@livia.etsmtl.ca

Patrick Maupin
DRDC Valcartier - Canada

patrick.maupin@drdc-rddc.gc.ca

Abstract

The incremental updating of classifiers implies that
their internal parameter values can vary according to
incoming data. As a result, in order to achieve high per-
formance, incremental learner systems should not only
consider the integration of knowledge from new data,
but also maintain an optimum set of parameters. In this
paper, we propose an approach for performing incre-
mental learning in an adaptive fashion with an ensem-
ble of support vector machines. The key idea is to track,
evolve, and combine optimum hypotheses over time,
based on dynamic optimization processes and ensem-
ble selection. From experimental results, we demon-
strate that the proposed strategy is promising, since it
outperforms a single classifier variant of the proposed
approach and other classification methods often used
for incremental learning.

1. Introduction

A problem when updating classification systems is
that their best set of parameters can change as a result
of data coming in at different times. These changes
would constitute minor fluctuations in the underlying
probability distributions, which could result from either
sample shifting or the natural evolution of classification
problems. As a consequence, the sample distributions
of training data chunks may change during incremental
learning processes, affecting the system in several ways.
In the literature, this phenomenon is defined as popula-
tion drifts [4, 6]. Thus, unless an incremental learning
system considers readjusting its internal parameters in
relation to data variations beyond merely training its ex-
isting models with new data, the whole system may be-
come obsolete, and hence fail to achieve a better adapta-
tion in the future. In light of this, unlike common incre-
mental learning methods that consider the adjustment of

parameters as a static process (i.e. constant parameter
values are employed infinitely), we propose to optimize
them over time to increase the system’s power of gen-
eralization and decrease its complexity. The main nov-
elty of this paper is to consider the incremental learning
process as a dynamic optimization one, in which mul-
tiple hypotheses are dynamically tracked, evolved, and
combined over time. The proposed approach incorpo-
rates various techniques, such as incremental Support
Vector Machine (ISVM) classifiers, change detection,
dynamic Particle Swarm Optimization (DPSO), and, fi-
nally, dynamic selection of classifier ensembles (EoC).
Basically, it is based on these two principles: (1) incre-
mental accommodation of new data by updating mod-
els, and (2) dynamic tracking of new optimum system
parameters for self-adaptation. Incremental SVM en-
sembles are employed for two main reasons: (1) the
SVM classifier does not depend on the dimensions of
the input space, which makes it robust with respect to
the well known curse of dimensionality and very ad-
vantageous for incremental learning situations; and (2)
SVMs are combined into ensembles because their per-
formance can often surpass that of a single classifier, es-
pecially when the level of uncertainty is high, i.e. when
only small sample sets are available for training [7]. The
proposed framework will also ultimately contribute to
strategies for optimizing and overproducing classifiers,
as well as to the application of memory-based mecha-
nisms for solving dynamic optimization processes. We
test the proposed approach in single and multiple classi-
fier configurations and compare them with these strate-
gies: SVM optimized with PSO in batch mode, incre-
mental SVM with parameter values fixed beforehand,
and two incrementally capable classifiers (1-NN and
Naı̈ve Bayes). We also try to verify whether or not in-
cremental learning with SVM can achieve similar per-
formances to those obtained in batch mode, and whether
or not the adaptation of the system’s parameters over
time is actually a dynamic optimization problem, and
hence important to achieving high performances.

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.984

4032

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.984

4052

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.984

4048

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.984

4048

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.984

4048

2 Proposed Approach

From the literature, it can be noted that, no matter
what the incremental learning approach, no considera-
tion has been given to the tuning of system parameters
over time. In other words, systems are always updated
based on the same fixed parameter values, or at the clas-
sifier combination levels in ensemble approaches. Thus,
the updating of classifiers with the adaptation of their
parameters has not yet been investigated. Furthermore,
recent results indicate that using well-tuned incremen-
tal ensemble learners could achieve better than merely
moderate performances [5]. In this connection, we pro-
pose an approach for adaptive incremental learning that
regards the incremental learning process as a dynamic
optimization one. In particular, it performs adaptive in-
cremental learning by optimizing, selecting, and com-
bining incremental SVM classifiers over time. More
specifically, it is designed to dynamically indicate op-
timum solutions for sequences of datasets D(k), either
by using the best solutions found to that point, or by
starting new dynamic optimization processes. As we
employ ISVMs as our base classifiers and DPSO for
searching for optimum hyperparameter values, each so-
lution s represents a particle codifying an SVM hyper-
parameter set, e.g. {C, γ}. Change detection mech-
anisms monitor novelties in the objective function F ,
and indicate how the system must act. The models gen-
erated are updated from incoming data, and then dy-
namically selected and combined into an ensemble C∗.
The method is implemented based on a framework com-
posed of five main modules: change detection, adapted
grid-search, DPSO, incremental SVMs, and decision
fusion. It represents some upgrades implemented since
our first version was introduced in [3], such as the use
of incremental classifiers, dynamic selection, and the
building of ensembles from optimized models. The
way in which the proposed approach works is set out
in Algorithm 1. Below, we detail each module. Δ rep-
resents a set of data sv composed of support vectors
and relevant samples rs selected during the training of
the final classifier from the best particle s∗. Therefore,
Δ = {sv∗ ∪ rs}, where sv∗ refers to support vectors
obtained from the final incremental model M∗ trained
with hyperparameters found by the best particle s∗. SV
denotes the set of support vectors sv from incremental
models obtained after final training of all P particles
from a Swarm S(k − 1), i.e. SV = {svj}P

j=1. C repre-
sents an ensemble composed of all models (i.e. classi-
fiers) Mi. So, C = {Mi}P

i=1, where P is the maximum
number of optimized solutions. Finally, for the sake of
simplicity, in the equations, D(k) represents the merg-
ing of new data and the current knowledge stored.

Algorithm 1 Adaptive Incremental Learning (AIL)
1: Input: A training set of data D(k).
2: Output: Optimized SVM classifier/ensemble.
3: recall system memory stm(s∗(k − 1),S(k − 1))
4: if there is a S(k − 1) then
5: Check the preceding best solution s∗(k − 1) regarding

the dataset D(k)
6: if Change Detection(s∗(k − 1),D(k)) then
7: Activate the adapted grid-search module and get so-

lution s′(k)
8: if Change Detection(s′(k),D(k)) then
9: Activate the DPSO module

10: end if
11: end if
12: else
13: Activate the DPSO module
14: end if
15: upgrade system memory stm(s∗(·),S(·)).
16: Train/update/combine the final incremental SVM classi-

fiers from incoming data D(k), Δ(k), and SV .

• Change Detection: This module monitors dif-
ferences in the objective function values, in this case
cross-validation error estimations ε obtained for a best
solution s∗ on the datasets D(k − 1) and D(k), i.e.
ε(s∗,D(k − 1)) and ε(s∗,D(k)), respectively. If the
solution is found not to be satisfactory for the process,
then a further searching level is activated. The adequacy
of a solution is related to a stable region, i.e. if the ob-
jective function value computed does not lie in a “sta-
ble” region, which is computed through the maximum
expected difference δmax between the objective func-
tion values at the 90% confidence level using a normal
approximation to the binomial distribution (see Equa-
tions 1 and 3) [2].

δmax = z0.9 ×√
σ = 1.282 ×√

σ (1)

Where σ is computed by, where W (·) is the dataset
size:

σ =
ε(s∗,D(k − 1)) × (1 − ε(s∗,D(k − 1)))

W (D(k − 1))
(2)

+
ε(s∗,D(k)) × (1 − ε(s∗,D(k)))

W (D(k))

• Adapted Grid-Search: This module identifies op-
timum solutions through the re-evaluation of knowledge
acquired from previous optimizations carried out by our
DPSO module with respect to the current data D(k).
This knowledge is represented by a set S(k − 1) of op-
timized solutions stored in a short term memory (STM).

• Dynamic Particle Swarm Optimization - DPSO:
The DPSO module indicates new optimum solutions by
means of dynamic optimization processes, the goals of
which are: (1) to work on multi-modal search spaces,

40334053404940494049

and (2) to track changes of fitness landscapes and op-
timum point positions, since these can vary depending
on the incoming data received over time. It is based on
the PSO algorithm combined with dynamic optimiza-
tion techniques. We implement this module so that it is
capable of exploring multiple regions in parallel, and is
therefore a better fit for functions with possible multiple
local optima. A full description of this module and de-
tailed explanations about each of the previous modules
can be found in [3].

• Incremental Support Vector Machine - ISVM:
In this study, we implement an incremental SVM ver-
sion based on the Syed et al. method [6]. As in [6], an
incremental SVM model Mi(k) is trained on the cur-
rent training data chunk D(k) and its historical support
vectors sv(k − 1) identified from a previous learning
event at a given time k. However, unlike in [6], where
only support vectors are stored, our incremental SVM
module also retains additional training samples relying
on a “relevant region” which exceeds the SVM margins
in half of their sizes. Although the storage of additional
samples is not a desirable property in incremental learn-
ing algorithms, it is necessary, because these additional
samples can become support vectors during optimiza-
tions of SVM hyperparameters optimization in the fu-
ture.

• Decision Fusion Module: Our dynamic selec-
tion strategy is implemented based on a generaliza-
tion bound introduced in [1]. In this dynamic strat-
egy, only combinations of classifiers that minimize this
bound (called the CI measure here) are selected to
make up the final ensemble. In particular, this mea-
sure is computed as CI = σ(τ)/μ(τ)2 , where σ and
μ denote the variance and the average calculated over
the set of margins τ from samples of the current train-
ing set respectively. The margin of a sample xi repre-
sents a degree of confidence in its classification. Ba-
sically, it is calculated as the difference between the
decision support ϑ assigned to the true class t minus
the highest support estimated for any other class j, i.e.
τi = ϑt(xi) − maxj=1,...,c

j �=t
{ϑj(xi)}. Here, for a single

classifier, the decision support for a class j is denoted
as the posterior probability assigned to it. In the same
way, for an ensemble composed of classifiers with out-
put probabilities, the decision support for a class j is
the average over the posterior probabilities assigned to
it by each member. The selection process is performed
as follows. First, the pool of classifiers C(k) generated
from S(k) is sorted according to each classifier’s in-
dividual confidence level (average margins). Then, the
selection process starts by adding one classifier at a time
until the maximum number of classifiers is reached,
i.e. a number of particles P . Every time a classifier

is added, the CI selection criterion is recomputed. The
best ensemble selected C∗ is that with a minimal CI
value. Thus, the key idea is to select the ensemble with
the strongest, i.e. highest, confidences, and fewer cor-
related classifiers over the current training set. Finally,
once the best ensemble C∗ has been selected, the classi-
fiers are combined using weighted average voting based
on their performances.

3. Experimental Protocol

The following experimental protocol has been car-
ried out to test our adaptive incremental learning ap-
proach. First, to characterize the occurrence of popula-
tion drifts with greater impact, the original training sets
were divided into small datasets. The total number of
chunks and their sizes were determined based on a min-
imum number of samples required for each class, which
was set to at least 16. Database descriptions and num-
ber of chunks used are listed in Table 1. The results
represent averages drawn over 10 replications.

Table 1. Databases used.
Databases # of # of # of Training Test

Classes Features chunks Size Size
DNA 3 180 29 2,000 1,186
IR-Ship 8 11 8 1,785 760
P2 2 2 120 3,856 10,000
Satimage 6 36 25 4435 2,000

The following strategies were used for compari-
son purposes: Batch SVM-PSO, the original training
datasets are used for selecting optimum SVM hyper-
parameters with PSO and generating the final model;
Incremental no-less classifiers (1-Nearest Neighbor
(1-NN) and Naive Bayes (NB)); Incremental SVM
(ISVM), where an incremental SVM classifier tailored
from [6] is updated from successive data chunks D(k)
(its hyperparameters are first tuned with PSO over the
first data chunk D(1), and then kept fixed over all the
other data chunks); our proposed incremental approach
in single classifier mode (IS-AIL), ; and Incremental
EoC-AIL (IEoC-AIL), our proposed approach in EoC
mode. We have used these parameter settings for the
optimization algorithm. The swarm sizes were set to
20. The dimensions of the (C and γ) search space were
set to [2−6, 214], [2−15, 210].

3.1 Results

We report the generalization errors achieved by each
strategy tested in Table 2. The best results are shown in
bold. The underlined values indicate when one incre-
mental strategy was significantly better than the others,

40344054405040504050

according to a Kruskal-Wallis nonparametric statistical
test. By analyzing the results in this table, we can see
that the SVM is very promising for incremental learn-
ing, even with its hyperparameters kept fixed at a value
found on D(1) (ISVM). More importantly, we observe
the efficiency of the proposed method, as well as con-
clude that adaptive incremental learning clearly leads to
better performances. That is because the single classi-
fier version of our proposed method (IS-AIL) achieved
better results than the ISVM strategy commonly used.
This shows the importance of the adaptation of hyper-
parameters and the use of relevant samples during the
incremental learning process. In addition, we can see
that the proposed method (IEoC-AIL) achieved results
similar to those of SVM-PSO in batch mode, some-
times even better, proving that the dynamic selection
and combination of optimum solutions can actually im-
prove the overall performance of the system.

Table 2. Mean and standard deviation of
error rates obtained.

Approaches Databases
tested DNA IR-Ship P2 Satimage

SVM-PSO 5.13 (0.18) 4.86 (0.35) 1.64 (0.10) 8.06 (0.13)
1-NN 23.69 9.21 2.49 10.95
NB 6.32 30.92 42.38 20.45

ISVM 8.43 (1.48) 7.93 (0.44) 5.24 (0.14) 22.15 (0.93)
IS-AIL 4.71 (0.25) 5.04 (0.55) 4.80 (0.90) 8.83 (0.27)

IEoC-AIL 4.61 (0.27) 4.03 (0.30) 3.17 (0.56) 8.14 (0.17)

We also show results involving the generalization er-
rors between the IS-AIL and IEoC-AIL strategies over a
replication for the Satimage database in Figure 1. It can
be seen that different cardinalities are obtained through-
out the process. Eventually, the classical “non-less”
incremental learners NB and 1-NN achieved the worst
performances. The only exception was the P2 database,
where the 1-NN classifier outperformed the other meth-
ods tested. We note that the dynamic adaptation of the
hyperparameters during the incremental learning pro-
cess (IS-AIL) seemed to converge to the results ob-
tained in batch mode (SVM-PSO). For example, it also
tended to identify about the same number of support
vectors as when all the data are available for training.

4. Conclusion

We have proposed a modular dynamic optimiza-
tion approach to perform adaptive incremental learn-
ing, which generates classifiers from optimum regions
of the parameter search space and then dynamically se-
lects ensembles based on the classifiers’ confidence lev-
els to improve the overall results. We have empirically
demonstrated that the dynamic optimization of an incre-

0 500 1000 1500 2000 2500 3000 3500 4000 4500
6

8

10

12

14

16

18

20

22

Number of samples

E
rr

or
 R

at
e

C*(11)
C*(13)

C*(7)

C*(13)

C*(7)
C*(5)

C*(10)

C*(15)

C*(11)
C*(5)

C*(11)

C*(9)C*(13)
C*(9)

C*(9)

C*(5)

C*(15)

C*(13)
C*(19) C*(17)

C*(11)
C*(11)

C*(15)

C*(13)
C*(7)

IS−AIL

IEoC−AIL

Figure 1. Results for IS-AIL and IEoC-AIL.

mental classification system could improve its perfor-
mances, so that they could overcome classifiers without
adaptation or other classical methods. Moreover, we
have shown that the use of a multiple classifier approach
makes the system more flexible and robust in perform-
ing incremental learning.

5 Acknowledgments

This research was supported by grant OGP0106456
to Robert Sabourin from NSERC of Canada.

References

[1] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[2] L. Cohen, G. Bakish, M. Last, A. Kandel, and O. Kiper-
sztok. Real-time data mining of non-stationary data
streams from sensor networks. Inf. Fusion, 9(3):344–353,
2008.

[3] M. N. Kapp, R. Sabourin, and P. Maupin. A PSO-based
framework for dynamic svm model selection. In Procs of
the GECCO, pages 1227–1234, 2009.

[4] M. G. Kelly, D. J. Hand, and N. M. Adams. The impact of
changing populations on classifier performance. In Procs
of 5th Int. Conf. on KDD, pages 367–371, 1999.

[5] D. Parikh and R. Polikar. An ensemble-based incremen-
tal learning approach to data fusion. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics,
37(2):437–450, April 2007.

[6] N. A. Syed, H. Liu, and K. K. Sung. Handling concept
drifts in incremental learning with support vector ma-
chines. In Procs of the 5th KDD, pages 317–321, 1999.

[7] G. Valentini. An experimental bias-variance analysis of
SVM ensembles based on resampling techniques. IEEE
Transactions on Systems, Man, and Cybernetics, Part B,
35(6):1252–1271, 2005.

40354055405140514051

