2010 International Conference on Pattern Recognition

A High-dimensional Access Method for Approximated Similarity Search in
Text Mining

F. Artigas-Fuentes, R. Gil-Garcia
CERPAMID. Universidad de Oriente. Cuba
{artigas,gil} @cerpamid.co.cu

Abstract

In this paper, a new access method for very high-
dimensional data space is proposed. The method uses
a graph structure and pivots for indexing objects, such
as documents in text mining. It also applies a simple
search algorithm that uses distance or similarity based
functions in order to obtain the k-nearest neighbors for
novel query objects. This method shows a good selectiv-
ity over very-high dimensional data spaces, and a better
performance than other state-of-the-art methods. Al-
though it is a probabilistic method, it shows a low er-
ror rate. The method is evaluated on data sets from the
well-known collection Reuters corpus version I (RCV1-
v2) and dealing with thousands of dimensions.

1. Introduction

Searching the most similar documents to a given one
is crucial in text mining because it is the basic process
of many techniques such as classification or information
retrieval. Two of the major issues that text mining faces
are the large amount of documents, millions in modest
cases, and a very high dimensionality of the featured
space. Text documents are usually represented as vec-
tors, where each dimension corresponds to a term and
the value reflects its importance in the document.

There are many approaches to find the exact vicinity
of an object. However, they suffer the curse of dimen-
sionality, that is, their performance drastically decreases
as the number of dimensions grows. This problem pre-
vents its application in text mining.

To avoid the curse of dimensionality a variety of
methods based on inexact searching have been pro-
posed. In [1, 2] a probabilistic technique, with a good
performance, was presented. This solution uses some
elements of the training set as pivots or permutants. Ba-
sically, the permutants are used to predict proximity be-

1051-4651/10 $26.00 © 2010 IEEE
DOI 10.1109/ICPR.2010.772

3155

J.M. Badia-Contelles
Dpt. ICC, Univ. Jaume I. Castellon. Esparia
badia@icc.uji.es

tween elements and to reduce the number of real dis-
tance evaluation at query time. Although this method
has a good performance when searching proximities
over documents, it introduces an overload at search
time, due to the necessity to perform a sequential search
over permutants [1], or to use an auxiliary structure to
avoid it [2]. This overload increases when the space di-
mension or the size of datasets grows.

In this paper we introduce improvements to our ac-
cess method for indexing collections of objects repre-
senting a very high-dimensional space presented in [3].
For indexing, this method uses a combination of a graph
structure and pivots (used as entry points), and a very
fast search algorithm that uses distance or similarity
based measures in order to obtain the k-nearest neigh-
bors (k-nn) of novel query objects. In this paper, we in-
troduce a new fast way to generate the connected graph
and a prune rule to improve searches.

Although the time required to generate the index
structure grows with the size of collection of objects
used, this process is carried out only once (offline) and
does not affect the query process.

The rest of the paper is organized as follows: Sec-
tion 2 describes the access method. The experimental
results are discussed in Section 3. Finally, we expose
our conclusions in Section 4.

2. Access method

In this section, the access method presented in [3] is
briefly explained, and the improvements are introduced.
The method involves two main phases. In the first one,
the graph structure is constructed using a database of
objects. In the second phase, the neighborhood of novel
objects is found.

2.1. Index structure generation

The idea of our index structure is to create a con-
nected and non-oriented graph where each element is

IEEE
@ computer
socle

ty

joined with its 6 nearest neighbors. This idea was first
presented by Dickerson in 1996 [4], using a variant of
Delaunay triangulation, but this method is not always
applicable to documents because it requires more ob-
jects than dimensions. The Dickerson method permits
to obtain the exact vicinity of already indexed objects,
not of novel ones. To solve that problem, we choose, us-
ing a certain criteria, a few number of indexed elements
as entry points to the structure.

In [3] we present a brute force method to construct
the graph index structure, but the time required to gen-
erate it grows fast with the size of dataset. In this paper,
we present a new and more efficient algorithm to per-
form this task. But first, we describe two conditions
used in some steps of our method:

e Cl: u; € Uisexternal to O C U, for the relation-
ship U, iif U (ug,u) < ¥(o0;,w) VYo; € O.

e C2: u;, € Uisinternal to O C U, for the relation-
ship U, iif U (ug,u) > ¥(o0;,u) VYo; € O.

were U is the database, w is the global centroid of U, O
is the set of objects connected with uy, by the graph, and
¥ is the particular distance, similarity or dissimilarity
measure used in the specific problem.

The new algorithm is the following:

1. A connected graph is generated using all database
objects.

(a) initially, the objects of the database are sorted
by its relationship with the global centroid,
and divided into a list L of equal sized sub-
sets.

(b) let ! be the first subset in L.

(c) the closest pair (o,., 0;) of objects in [are con-
nected and its centroid ¢, is calculated and
saved.

(d) the closest pair formed by a non-connected
object o, from I, and a saved centroid ¢, 4
is calculated. Object o is connected with the
two objects related with ¢, 4 (0p, 04), and two
new centroids, ¢, and c. 4, are calculated

and saved.

(e)

step (d) is repeated until all objects of [are
connected into the graph.

(f) set! as the next subset of L, if exists.
(g) if I # () go to step (d), else exit.
2. The graph is completed by adding edges in such a

way that each object is connected with its 6 nearest
neighbors (calculated using an exhaustive way).

3156

3. The entry-points set is created with objects that ful-
fill conditions C1 or C2.

The main idea of the new algorithm is to reduce the
number of objects to be compared with centroids in
each iteration (step (d)). The connected graph obtained
is not the same that with the original algorithm, but this
is not important because the graph will be completed in
step 2.

2.2 Searching

In this phase, novel objects are used as queries. The
goal is to obtain the k£ most related indexed objects to
each of these queries. We perform this task in two main
steps. If k£ = 1, it is obtained by performing only the
step 1 of the algorithm described below. On the con-
trary, if £ > 1, the second step of the algorithm is re-
quired.

The idea of the searching algorithm is the following:

1. First, the NN object of query ¢ is calculated:

(a) From the entry-points set, the £ P most re-
lated objects with ¢ are selected. Those ob-
jects are the initial NV solution set.

(b) From indexed objects connected with any ob-
ject in the current N NV, the most related with
q is selected and becomes the new N N solu-
tion.

(c) Step (b) is repeated until no object connected
to the current N N solution is nearer to ¢ than
it.

(d) Set kN N, the original solution set, equal to
NN solution.

2. If more than one object is needed in the solution:

(a) Set a search radio equal to the worst possi-
ble relationship between two objects as it is
defined by U.

(b) From indexed objects, and connected with
any object in kNN solution set, select at
most k new objects with relationship value

equal or greater than the radio.

(¢c) From the union of objects in current kN N
solution and objects obtained in previous
step, select the k objects most related to g.
These objects become the new kNN solu-
tion set. If no new objects were found, return

kN N and end the algorithm.

(d) Update the radio value with the worst rela-
tionship value between objects in the current
kN N solution and gq.

(e) Go to step (c).

2.3 Prune rule

In order to avoid computing a large number of re-
lationships between objects, a prune rule was applied.
When we need to obtain the most related objects to the
query (in steps 2.a and 2.b), we first sort the candidate
vectors by its decreasing number of coincident dimen-
sions greater than zero with the query. Then, we just
compare the query with a fraction of vectors with high-
est coincidences.

3 Experimental results

In order to compare the new graph method
(nGraph), the old one (oGraph) [3], an exhaustive
knn searcher, and two variants [1, 2] of the permutation
based indexing method, Permut and Permut+LC,
were implemented, always using the same relationship
function.

The ¥ used (1) was a distance function based on
the well-known cosine similarity, because it is the most
wide used to compare documents in text mining:

U(o1,02) = ey

All the algorithms were implemented using Python
2.5 over an Intel(R) Core(TM)2 Quad CPU, 2.50 GHz
and 3GB of RAM with Linux Mandriva 2009 OS.

To perform our experiments, we use the well-known
benchmark collection Reuters corpus version 1 (RCV1-
v2) [5]. This collection has a set of documents repre-
sented as vectors. The feature vector for each docu-
ment was produced from the concatenation of text in
the <headline> and <text> XML elements. Text was
reduced to lower case characters, after which tokeniza-
tion, punctuation removal and stemming, stop word re-
moval, term weighting, feature selection, and length
normalization was applied. The LYRL2004 partition,
with 23149 training, and 781265 testing vectors, was
used. The representation space of this partition has a
of 47152 dimensions. Both training and testing subsets
were used as database and query objects, respectively.

First, to calculate the impact of our improvement in
the indexing phase, different sized indexing structures
with all mentioned methods were generated. For that,
various vectors of the database were randomly selected.
In order to generate graphs, #=30, and two different
subset sizes for step 1.a (s=20 and s=50), were used. For

1 — cos(o1, 02)

3157

—— oGraph
—a— niraph (=507

—— nraph (s=20)

00 200 300 400 500 EDO OO 200 Q00 4000

dazbase size

Figure 1. Generation time for different
sized training sets. oGraph and nGraph.

12000
{0000 4 | Subs et ==50
—a— Permut
_ 00— permut+Bal
1l
E 000 +
000 4
2000 H
o i |
1000 2000 2000 000 S000 G000 000
datazat size

Figure 2. Generation time for different
sized training sets. nGraph and permu-
tants.

permutations we use the same parameter values men-
tioned in its original papers. We use as secondary in-
dexing structure for permutations, the LC exact method
reported by E.Chavez et al. in [6]. The processing time
comparison between our original and improved algo-
rithms was reported in Figure 1. The comparison with
the rest of methods was reported in Figure 2.

We can see in Figure 1 that nGraph reduces the time
required by oGraph to generate the graph index struc-
ture. Besides, the performance is not impacted by small
variations in the subsets size (step 1.a).

On the other hand, Figure 2 shows that the required
time for indexing of the others methods is less than ours,
but it has not any impact over the search phase.

Next, in order to evaluate the effect of our prune
rule in the search phase, the 5-NN of 500 randomly se-
lected testing vectors were computed. For each method,
the average search time, the number of right solutions
(against the sequential one), and the average percent of
relationships computed, were reported in Figures 3 to

—a—Pemuts

—h— Pemuts+C
—se—nGraph

—#— nGraph+Prune EP=1
—a—nNGraph+Prune ER=3

percentage

3000 10000 13000

dataset size

20000

Figure 3. Comparison of average percent
of relationships computed.

—m— Permuts

—&— Pemuts+LC

1 —<—nGraph

—— NGraph+Prune EP=1
1 —e— nGraph+Prune EP=3

2000 10000 15000

dataset size

20000

Figure 4. Average search time for each
method varying the size of database.

5, respectively. We adjust our prune rule to compare
only the 50 percentage of candidate objects. Finally, we
select 1 and 3 as values of the /P parameter.

Figure 3 shows that the average relationships com-
puted by our methods decreases as the dataset size in-
creases. On the other hand, Figure 4 shows that the av-
erage search time of our algorithm is less than the oth-
ers for all dataset sizes reported. This happens because
we only compute a small number of relationships due
to the impact of combination of our data structure and
prune rule. For Permut, the search costis O(k + fn),
for real objects, plus O(kn + fnlog n), for permutants.
Using LC, in the best case, the second cost is reduced
to O(kfn) (see [2] for details).

Finally, Figure 5 shows that the number of exact an-
swers (objects) appearing in solution sets for the com-
bination of nGraph, prune rule and EP = 3, is greater
than other variants for all dataset sizes reported.

4 Conclusions

In this paper, an improvement of our previous access
method based in graphs is proposed. This new method

3158

‘_)_I_r_.____i___‘_________—a

;’i@

—— Pemuts

—&— Pemuts+LC

—a— nGrapn

—#— nGragh+Prune EP=1
—#— nGraph+Prune EF=3

3000 10000 13000

dataset size

20000

Figure 5. Number of objects in solutions
reported by exhaustive search.

deals successfully with the curse of dimensionality and
can be applied, for example, to text documents with
thousands of dimensions. We compare its performance
against two state-of-the-arts methods based on permu-
tants. The experimental results show that our method
reduces both the average search time and average rela-
tionships computed, with similar or even better quality
results for dataset sizes reported.

References

[1] E. Chéavez, K. Figueroa and G. Navarro. Effec-
tive proximity retrieval by ordering permutation.
TPAMI'07. IEEE Transactions on Pattern Analisys
and Machine Intelligence:30(9):1647-1658. Sep.
2008.

[2] K. Figueroa and K. Fredriksson. Speeding up per-
mutation based indexing with indexing. SISAP’09.

IEEE Computer Society:107-114. 2009.

[3] F. Artigas-Fuentes, R. Gil-Garcia, J.M. Badia-
Contelles and A. Pons-Porrata. Vicinity calcula-
tion with graph in text mining. UCT,48, F. Genolet

(Eds.): 1-10, July 2008.
(4]

M. Dickerson. Algorithms for proximity problems
in higher dimensions. Computational Geometry

Theory and Applications, 5:277-291, 1996.

[5] D.L. Lewis, Y. Yang, T.G. Rose and F. Li. RCV1:
A new benchmark collection for text categorization
research.Journal of Machine Learning Research,

5:361-397, 2004.
(6]

E. Chavez and G. Navarro. A compact space de-
composition for effective metric indexing. Pattern

Recognition Letters, 26(9):1363-1376, 2005.

