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Abstract—Hand pose recognition has been a problem of
great interest to the Computer Vision and Human Computer
Interaction community for many years and the current solu-
tions either require additional accessories at the user end or
enormous computation time. These limitations arise mainly due
to the high dexterity of human hand and occlusions created
in the limited view of the camera. This work utilizes the
depth information and a novel algorithm to recognize scale and
rotation invariant hand poses dynamically. We have designed
a volumetric shape descriptor enfolding the hand to generate a
3D cylindrical histogram and achieved robust pose recognition
in real time.
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I. INTRODUCTION

The classical appearance-based approach to the problem
of vision-based hand pose estimation was re-visited by
the introduction of depth cameras by companies like 3DV
Systems [1] and Canesta [2]. These cameras can gener-
ate relative depth maps at 30 fps without the need for
calibration. These depth maps can be utilized in real-time
to achieve faster and accurate pose recognition than some
of the optimization-based and template-based approaches
mentioned in the survey article [3].

In this work, we have explored various methods to
recognize six signature hand poses derived from a hand
gesture vocabulary which was inspired by the intuitiveness
to interact with the computer for command and control. The
ZCam camera from 3DV Systems used in our experiments
generates an RGB image as well as the depth map (8 bit)
of objects present in its view. The interaction distance of
the user from the camera is approximately set to 1.5 m
and is independent of the ambiance and the user. The basic
hand poses and their nomenclature observed in our gesture
vocabulary are shown in Figure 1.

Our goal is to detect these signature hand poses irrespec-
tive of their change in position, orientation or scale. This is
a challenging task since the hand is highly deformable and
inferring the hand shape from 2D image data can be severely
under constrained. We have tried to achieve our goal by
augmenting the 2D image data with depth information. A
new volumetric shape descriptor was developed which was
inspired by the 2D shape descriptor introduced by Belongie
et al. [4]. This volumetric shape descriptor gives the depth

embedding at various levels. We argue that this multi level
depth embedding along with the shape description can help
us classify poses better. We have also explored a compressed
version of a volumetric shape descriptor by storing the
localized average depth of a collection of pixels.

(a) Palm pose (b) Point pose (c) Lateral pose

(d) Thumb pose (e) Open pose (f) Close pose

Figure 1. Signature hand poses

Since the depth cameras are yet to be widely commercial-
ized, only a few studies have been conducted so far using
depth for hand pose recognition. The algorithm proposed
in [5] models a hand pose as a combination of a set of
basic finger poses and finger inter-relations. The algorithm
requires user initialization, limits the rotation of the hand to
±30 degrees and is heavily dependent on the signature finger
poses and may fail to recognize the pose which cannot be
represented by the combination. The algorithm suggested in
[6] uses PCA aligned data points on the hand as features.
The downside however is, they require an extensive synthetic
training set and it is not very clear if the system can handle
scale variation. Depth data has also been used in gesture
recognition in [7], [8]. The problem addressed by each
of the above algorithms are heavily constrained and do not
tackle scale and rotation invariance successfully.

We present a bird’s-eye view of various stages involved
in our algorithm in Section II. Section III describes in detail
the volumetric shape descriptors. Section IV discusses our
results and we conclude in Section V.
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II. OUR ALGORITHM

We believe that there is a very high mutual information
between the depth and the shape of the hand. In accordance
with our belief and to show the merits of using depth
information, we have conducted separate tests with 2D shape
descriptor, compressed volumetric shape descriptor and fi-
nally the 3D volumetric shape descriptor as features and
compared the results. The stages involved in our algorithm
are described below.

A. Preprocessing

The depth image generated by the camera is scaled to 0-
255. Otsu’s thresholding algorithm is applied to the depth
histogram to segment the hand from the rest of the image.
After thresholding the image, the pixel co-ordinates (x, y)
and the corresponding unscaled depth values (d) of the
segmented hand region are extracted. Let X be the set of
all the points extracted from each frame. Unscaled depth
values are used to avoid the non-linear behavior of the depth
map introduced by the camera. Figure 2 shows the ZCam
camera, depth image of the Palm pose and its corresponding
3-dimensional view as a heat map. The heat-map like view
show the points with the highest depth value (closest) as red
and the lowest depth value (farthest) as blue.

(a) Zcam (b) Depth image (c) Heat-map

Figure 2. Camera and depth data

This point cloud is then centered by subtracting its mean.
The centered data points (X) are transformed to the PCA
space which results in rotation invariance. Projection on
to the PCA space can cause severe ambiguities in the 3D
case where the directions are uncontrolled, though the trans-
formed points are rotation invariant, without a consistent
polarity, the invariance hardly makes sense in reality. We use
a novel method which is detailed in Section III to identify
the principal component along the depth direction and to
uniformly align it across all the frames. The PCA trans-
formed points are then ported into cylindrical co-ordinate
system (r, ϕ, z) for the feature extraction.

B. Features Extraction

Experiments were carried out to analyze the performance
of various shape descriptors. The 2D shape descriptor,
compressed 3D shape descriptor and 3D volumetric shape
descriptor are discussed in Section III. These features were
averaged over 3 frames to feed more information into the

classifier. This idea was inspired by the concept of structure-
from-motion. It counteracts the problem faced due to occlu-
sion in a few poses. For example, the lateral pose suffers
from extreme occlusion when the hand is held perpendicular
to the view of the camera.

C. Training

We collected 10 - 15s of video for each pose with
the hand held at various angles and distances from the
camera, numbering to around 400 frames per pose to train
the classifiers. The training samples were gathered in both
sitting and standing poses to make the detection view-
invariant and to register the possible tilt in the data. We
chose to use Support Vector Machines (SVM) for training
the hand model. The model parameters were generated by
cross validation procedure over the training images. SVM
was used to generate probabilistic estimates to obtain the
confidence of classification. We have used the LIBSVM
module developed by Chang et.al [9] in our implementation.

D. Evaluation

A new set of videos different from the training videos
varying in scale and orientation were used for testing the
model. Every frame of the video was thresholded, trans-
formed into the PCA space. After feature extraction the
learned SVM model classifies the data into one of the six
possible poses with a probability greater than 0.8. A confi-
dence of 0.8 was chosen empirically since the classification
probability of SVM for a correctly classified frame was
found to range between 0.85-0.99. A decision is made for
every frame of the video. If the classification probability is
below the threshold, the frame is displayed with no pose
detection.

III. FEATURE DESCRIPTORS

In this section we describe in detail the feature descriptors
used for evaluation.

A. 2D Shape Descriptor

The 2D shape descriptors are generated by counting the
spatial distribution of points on a set of concentric circles di-
vided into sectors. We empirically chose to use 5 concentric
circles divided into 8 sectors in our implementation. Only
(x,y) co-ordinates are considered for PCA and cylindrical
co-ordinate transformation. The scale invariance is achieved
by dividing the range of r value into 5 equi-partitioned
circles. Hence, irrespective of the size of the user’s hand, the
percentage of pixels in a sector patch will remain constant
over a pose. The range of ϕ is always 0 - 2π and is divided
equally into 8 parts (sectors). The percentage of data points
in each bin is stored as its corresponding feature. The 5-
fold cross validation accuracy obtained for the training set
was 95.54%. A high accuracy on the training set suggests
redundant samples.
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B. Compressed 3D Shape Descriptor

Compressed 3D shape descriptor stores the average depth
of the data points in every bin along with its 2D shape
descriptor. The depth value varies non-linearly as the hand
moves closer or away from the camera and has to be
normalized. Without calibration, the relationship between
the distance and the depth variation within the point cloud
cannot be estimated. By experiments, we have found that the
variation of depth range within a pose is very low. Hence,
we re-scaled the depth values from 0 to [max(d)−min(d)],
where d is the set of all the depth values of the data points in
X. In other words, we assume that the [max(d)−min(d)]
(range of depth) value remains more or less constant across
a given pose. For each of the bins in the 2D concentric
histogram, we also store the average of the re-scaled depth
values as a feature. We need to note that only the (x, y)
co-ordinates are used for PCA transformation, while the
depth dimension is untouched after scaling. The 5-fold cross
validation accuracy on the training data was found to be
98.27%, which is consistent with our assumption that depth
information increases accuracy. But this method might fail
in a few cases where the basic assumption of constant depth
variation does not hold good.

(a) 3D shape descriptor (b) Overlaid on hand

Figure 3. 3D shape descriptors

C. 3D Volumetric Shape Descriptors

This feature utilizes the depth information to reconstruct
the hand in a 3D view. The 3D shape descriptor is an ex-
tended 2D shape descriptor and is cylindrical in shape. The
cylinder is segmented along its axis to generate a number
of discs as shown in Figure 3(a). The axis of the cylinder is
always assumed to be aligned with the principal component
along the depth direction. Hence, we make the assumption
that hand pose can be distinguished by looking at the point
distribution along the depth axis. Transforming the point
cluster into the Principal Component Analysis (PCA) space
and constraining the third principal component (one with the
least variance) to correspond to depth dimension is a non-
trivial problem. The principal components are always chosen
in the decreasing order of the variance. Predominantly, depth
tends to be along the least variant direction, but there might
be a few instances where the axes are flipped leading to an

unconstrained PCA. The directions predicted by the PCA
might not conform to reality and distort the data and hence
we propose a novel method of altering their directions to get
a consistent representation.

Let V[3X3] = (v1,v2,v3) be the eigen vectors of the
data matrix, X = (x, y, d) and V′

[2X2] = (v′
a,v

′
b) be the

eigen vectors corresponding to X = (x, y) ignoring the
depth dimension. We propose to find two eigen vectors in
V which correlate with the eigen vectors in V′ and hence
isolating the eigen vector or the principal component along
the depth direction. The correlation matrix S is calculated by
S = |V′T

[2X2].V[2X3] |, where d dimension in V is ignored.

S = |V′T
[2X2].V[2X3]| =

[
Sa1 Sa2 Sa3

Sb1 Sb2 Sb3

]
The first row of S corresponds to the correlation score

of eigen vector [v′
a] with the eigen vectors [v1,v2,v3]

hence the maximum of these correlation scores is used to
find the correspondence i.e. if Sa2 is maximum, [v′

a] in 2D
corresponds to [v2] in 3D. If the indicies turn out to be
the same for both [v′

a] and [v′
b] then the absolute value of

correlation score is compared for disambiguation. Hence, by
finding these correspondences we are indirectly finding the
eigen vector in the depth direction, which is assumed to be
the third principal component always.

To ensure a consistent polarity, we verify if the direction
from the minimum depth to the maximum depth remains
the same even after the transformation into PCA space. If
the direction is inverted (i.e. the minimum depth becomes
maximum depth) we invert the direction of all the principal
components to ensure consistency. The corrected data points
are transformed into cylindrical co-ordinates and the percent-
age of data points in each of the 3D sector is stored as its
corresponding feature, as shown in Figure 3(b). By varying
the number of discs from 3 to 8, we have found the optimal
number of discs to be 5. The 3D shape descriptors are very
sparse and sparsity might lead to redundant dimensions and
low classification accuracies. To enhance the precision and to
simulate structure-from-motion in a crude way we averaged
the bin values from the past 3 frames before classification.
The 5-fold cross validation accuracy on the training data was
found to be 99.79%.

IV. RESULTS

A new set of dynamic hand gesturing videos with ap-
proximately 200 frames per pose were used for testing
and comparing the features detailed in Section III. The
test results obtained for each of the descriptors is shown
as a confusion matrix in Tables 1 - 3. The diagonal of
the confusion matrix gives the absolute accuracy of the
corresponding class. The real-time implementation of the
algorithm developed on OpenCV takes an average of 60
ms (16 fps) on a 2 GHz Inter Core 2 Duo Processor to
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classify each frame. Figure 4. shows some of the real-time
recognition results.

(a) Palm pose (b) Point pose (c) Thumb pose

(d) Lateral pose (e) Close pose (f) Open pose

Figure 4. Pose recognition result windows

A. Discussion

The confusion matrix can be used to deduce the con-
fidence of the classifier for each class and hence a defi-
nite confidence threshold can be set instead of having an
empirical threshold. The comparisons of the results show
that 3D shape descriptor performs significantly better than
the compressed 3D and 2D shape descriptor features. The
compressed 3D shape descriptor does not produce good
results as expected due to the non-linear variation in the
depth range. The results for Palm, Open and Close poses
are significantly enhanced proving our hypothesis of distin-
guishability using depth. The confusion between the Palm,
Open and in some cases the Lateral poses can be justified
because of the similarity in their shape during the transition
to other poses.

V. CONCLUSION

In this paper we have presented a novel feature descriptor
and algorithm for recognizing hand poses dynamically. We
have also developed a new method to automatically constrain
the PCA directions in 3D data. The strength of our method
mainly lies in recognizing hand poses which are rotation and
scale invariant in real-time without the need of extensive
training/template sets. Since our method relies only on
the depth information, we no longer face any limitations
caused by the lighting conditions. By comparing the results
we find that our new algorithm for detecting hand poses
using 3D volumetric shape descriptor performs significantly
better as compared to the traditional 2D shape descriptors.
However the shortcomings of the algorithm, mainly lies
in the assumption that the Z-direction (depth) is always
discriminative which might not be true in some cases. Also,
the algorithm cannot handle extreme occlusions. Our further
study incorporates expanding our signature pose library and
using structure-from-motion techniques to reconstruct the
hand pose in real-time.
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Table I
CONFUSION MATRIX FOR 3D SHAPE DESCRIPTOR

Class Palm Point Thumb Lateral Close Open
Palm 0.9188 0.022 0 0.0258 0.0185 0.0148
Point 0 0.9524 0.0280 0 0.0112 0.0084

Thumb 0.0102 0.0408 0.8112 0.1378 0 0
Lateral 0.0196 0.0078 0.0431 0.9020 0.0275 0
Close 0.0240 0.0080 0.1280 0 0.8320 0.0080
Open 0.0561 0.0093 0 0 0.0935 0.8411

Table II
CONFUSION MATRIX FOR COMPRESSED 3D SHAPE DESCRIPTOR

Class Palm Point Thumb Lateral Close Open
Palm 0.7528 0 0.1327 0 0 0
Point 0.0221 0.9552 0.0357 0 0.0080 0.0187

Thumb 0.0111 0.0224 0.7602 0.1412 0 0
Lateral 0 0.0056 0.0663 0.9294 0.0080 0.0187
Close 0.0443 0.0476 0.0051 0 0.6960 0.0748
Open 0.0221 0.0140 0.0102 0 0.0960 0.7664

Table III
CONFUSION MATRIX FOR 2D SHAPE DESCRIPTOR

Class Palm Point Thumb Lateral Close Open
Palm 0.6691 0.0706 0 0.0223 0.0446 0.1933
Point 0 0.9410 0.0112 0 0.0028 0.0449

Thumb 0 0.0205 0.7949 0.1846 0 0
Lateral 0.0433 0.0118 0.0866 0.8465 0.0039 0.0079
Close 0 0.0887 0 0 0.6371 0.274
Open 0.0093 0.1495 0.0093 0 0.1523 0.6794
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