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Abstract—This paper proposes the sequential context inference
(SCI) algorithm for Markov random field (MRF) image analysis.
This algorithm is designed primarily for fast inference on an
MRF model, but its application requires also a specific modeling
architecture. The architecture is composed of a sequence of
stages, each modeling the conditional probability of the labels,
conditioned on a neighborhood of the input image and output
of the previous stage. By learning the model at each stage
sequentially with regards to the true output labels, the stages
learn different models which can cope with errors in the previous
stage.
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I. INTRODUCTION

Markov random field (MRF) models have been widely used

in statistical image analysis [1]. MRF models characterize the

joint statistics of the observed image (or its derived features)

and the latent parameters of the vision processes. By consid-

ering the joint effect in the distribution by spatial neighbors,

contextual information and other properties of early vision can

be modeled in a convenient and consistent way, while using

the Markov assumption to simplify the dependencies of the

model.

Inference on the learned MRF models, however, is not

straightforward. Inference implies finding the maximum a
posteriori (MAP) of the model. In general, exact computation

through exhaustive search is infeasible due to the combina-

torial nature of the search. Algorithms that take advantage

of the factorization of the distribution, like belief propaga-

tion (BP) [2], cannot be used in this case because they are

limited to tree dependencies in the factor graph. The graphs

associated with MRF models for images, however, have loops

due to the interdependence between neighboring pixels. The

typical solution is to resort to approximate computational

methods such as loopy belief propagation [2], mean field

annealing [1], relaxation labeling [3], iterated conditioned

modes (ICM) [4], and fast graph cut methods [5], [6]. These

algorithms have several drawbacks, but their two major limi-

tations are their high computational complexity and the need

to iterate until convergence, which prevents their use in time-

critical applications. Moreover, some algorithms are not even

guaranteed to converge [7].

In this paper, the sequential context inference (SCI) algo-

rithm for modeling and inference in MRF image analysis is

proposed. The key difference is the use of a sequential archi-

tecture of models. Each stage models the posterior distribution

of the latent labels, conditioned on a neighborhood of the input

image and estimated latent neighbors, utilizing the result of

the previous stage as input in place of the values for the latent

neighbors. By learning the model at each stage sequentially

with regards to the true output label, the models learn to cope

with errors in the previous stage.

Two conceptually related approaches are stacked graphical

learning (SGL) [8] and Tu’s auto-context [9]. Both of these

methods build a dependency network of models that are used

for inference, similar to the sequential architecture utilized by

the SCI algorithm. SGL does inference using Gibbs sampling,

since it was designed primarily to reduce the computation in

Markov chains as the number of labels increases [8]. However,

in image analysis, a more pressing problem is the intractability

of inference in the presence of loops in the context estimation,

which leads to the use of a different formulation for modeling

and inference in the SCI algorithm. Auto-context is a boosting

strategy that sequentially learns classifiers from local filters

applied to the observed image and the result of the previous

classifier. Because a classifier utilizes the result of the previ-

ous classifier, it effectively congregates information from an

increasingly larger region in the input image, thus building

context. However, the feature filters must be given a priori,

or selected from a large filter bank of features. Thus, this

approach is computationally expensive and may not achieve

the best possible solution. In contrast, the models for the

SCI algorithm learn the probability distribution, rather than

a classifier, directly from image samples, implicitly finding

the relevant features.

II. SEQUENTIAL CONTEXT INFERENCE

Consider an input image X = {xi : i ∈ Ω}, where xi

denotes the feature vector for the ith pixel, and Ω is the

image lattice. The neighborhood of the ith pixel of X is

xi ≡ {xj : j ∈ N x
i }. For modeling, a supervised learning

strategy will be utilized. Hence, to be able to learn the models,

we will consider that a corresponding label image, denoted

Y = {yi : i ∈ Ω, yi ∈ L}, where L = {l0, . . . , lC−1}
is the set of C possible labels, is available during training.

Similarly, the neighborhood of the ith pixel in Y is denoted

yi ≡ {yj : j ∈ N y
i }, with N y

i a neighborhood system such

that i /∈ N y
i . Clearly, the neighborhood systems N x and N y ,

for X and Y , may be different. Specifically, note that the

center pixel is required not to be included by N y .
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Fig. 1: Diagram of the sequential architecture utilized by the

SCI algorithm. ‘I’ denotes the input image, and the Mi’s are

the models at each stage.

The goal of inference is to compute the latent image Y ∗

that achieves the MAP given X . That is,

max
Y

P (Y |X)

= max
Y

P (yi|Y \ {yi}, X)P (Y \ {yi}|X)

= max
yi

[
max

Y \{yi}
P (yi|xi,yi)P (Y \ {yi}|X)

]
,

(1)

for any i ∈ Ω, and using the Markov assumption with regards

to the observed image and configuration neighbors in the last

equality. This equation tells us that, given the optimum values

of the neighbors yi of the ith pixel in the underlying config-

uration, the most likely value of yi can be obtained through

local optimization. This result is the fundamental idea behind

the ICM algorithm [4] and belief propagation [2]. The critical

limitation, however, is that during inference, the optimum

values of the neighbors are unknown. Hence, this approach

cannot be applied directly. The SCI algorithm employs a multi-

stage sequential architecture, depicted in Fig. 1, to circumvent

this problem. Each stage models the probability distribution of

the labels, given the observed input image and the probability

output of the previous stage. Then, for inference, the sequential

architecture is basically “played back,” with the stages being

applied sequentially. The key difference is that by learning

different models with regards to the true labels the models

learn to cope and correct errors from previous stages.

Thus, each stage of the sequential architecture learns the

conditional distribution P (yi|xi,yi). The output of each stage

is a distribution over the possible label values. Rather than

computing the label assignment after each stage, formulating

the optimization directly on these probabilities is advanta-

geous because more information is preserved. For continu-

ous optimization, the labels must be written directly as a

vector of probabilities over the possible label values. This

is similar to the assignment in mean field annealing [3]. To

be unambiguous, each yi can only be one of the vectors

[1, 0, . . . , 0], [0, 1, 0, . . . , 0],. . .,[0, . . . , 0, 1], corresponding to

labels l0, l1, . . . , lC−1.

For optimization over C labels, the kth stage of the sequen-

tial architecture learns the vector function,

yk
i = Mk(xi,yk−1

i )

=

⎡
⎢⎣

Pk(y∗
i = [1, 0, . . . , 0]|xi,yk−1

i )
...

Pk(y∗
i = [0, . . . , 0, 1]|xi,yk−1

i )

⎤
⎥⎦ ,

(2)

Algorithm 1 Inference on the SCI algorithm.

• Initialization: compute/extract the observed image input

vectors {xi : i ∈ Ω}.

• For each stage k = 0, 1, . . . , K,

– Compute,

yk
i = Mk(xi,yk−1

i ).

– If k < K, form the vectors with all the probabilities

from the configuration neighbors of each pixel, {yk
i :

i ∈ Ω}.

• Assign each yK
i to the label with maximum probability.

with y0
i = ∅, meaning that no context is utilized, correspond-

ing to

y0
i = M0(xi) =

⎡
⎢⎣

P0(y∗
i = [1, 0, . . . , 0]|xi)

...

P0(y∗
i = [0, . . . , 0, 1]|xi)

⎤
⎥⎦ , (3)

where y∗
i is the true label of the ith pixel. In practice, only

C − 1 probabilities are needed because the probabilities over

the possible labels must sum to one. To map back to labels

of L, the pixel are assigned to the label with corresponding

largest probability.

The models are learned sequentially, meaning that the

model for the first stage is learned first, then the model for

second stage, and so forth. Sequential training must be utilized

because the output of the (k − 1) stage is needed as input to

train the subsequent model at the kth stage, as shown in (2).

To learn the model at each stage, in this paper, we uti-

lize multi-layer perceptron (MLP) artificial neural networks

(ANN) [10]. MLP-ANNs have been shown to be universal

function approximators, if the networks have at least one

hidden layer with enough processing elements (PEs) [11], [12].

Note that the SCI algorithm is not specifically coupled with

MLPs or, even more generally, neural networks. In fact, any
universal function approximator can be utilized. The MLP is

chosen here because it is very compact and computationally

efficient once the parameters of the network have been learned.

Two important design choices are the number of stages and

the configuration of each model. The number of stages can

be determined by evaluating the improvement in classification

accuracy after each stage. Training is stopped if the improve-

ment is considered minimal compared to the effort of training

another model. The choice of the configuration of each model

involves the usual trade-offs in adaptive systems’ training. In

the case of neural networks specifically, one must choose the

number of hidden PEs and learning rate by ensuring that the

system is converging and is not overfitting the data based on

the results of the first stage.

The primary advantage of the SCI algorithm is its ease

of inference. Given the input neighborhood context features

xi and neighborhood context in the estimated latent image

obtained from the previous stage, the models evaluate the

output probability directly. Inference is then simply a matter

of applying the models sequentially, as depicted in Fig. 1 and

outlined in Algorithm 1. Note that training the SCI algorithm
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Fig. 2: Stenctil neighborhoods used for the (left) texture and

(right) horse segmentation.

follows the same procedure as in Algorithm 1, with the

computing step corresponding to training of each model.

III. EXPERIMENTAL RESULTS

To illustrate the SCI algorithm, results are shown for tex-

ture segmentation and segmentation of the Weizmann horse

dataset [13]. In the first case, the dataset comprised 20 images,

each with two textures: a background texture, and a foreground

texture delimited by a star-shape (cf. Fig. 3(a)). Each image

has size 256 × 256 pixels. The images were obtained from

all pairwise combinations of a set of 4 background and 5

foreground textures. The Weizmann horse dataset consists of

328 grayscale horse images with different sizes. In both cases

the images were randomly divided into training and testing

sets of equal size.
In both cases, each model of the sequential architecture was

learned using an MLP-ANN. For texture segmentation, we

utilized an MLP with one hidden layer of 20 PEs, trained using

back-propagation with a stepsize of 0.001 and a momentum

parameter of 0.5. For horse segmentation, we used 30 PEs and

stepsize 0.0001. Five Monte Carlo instances were used per

network to minimize problems with local optima. Stopping of

training was decided by measuring the performance on a cross-

validation set of 20% of the training images. The remaining

images were used for testing. The input vectors were formed

by sampling the input image and output of the previous stage

with the stencil neighborhood given in Fig. 2, without the

center pixel in the latter case.
The inference results on two texture segmentation test

images are shown in Fig. 3(a). The second image shown

is one of the worst cases encountered, where it is clearly

noticeable that the labeling based on the output of the first

model, i.e., stage 0, would yield very poor results. However,

as one advances through the stages, the probability image

progressively approaches the true segmentation. At the end

of the last stage, the star shape is easily discernible, which is

a remarkable improvement to the output of the first model.

These observations can be verified quantitatively from the

average F-value curves shown in Fig. 4(left), which quantify

the performance for different classification thresholds. It is

clearly noticeable the systematic improvement of the F-value

with each inference stage. Moreover, in this case, applying the

SCI algorithm largely compensates for the high sensitivity to

the threshold value observed in the initial stages.
The test results on the horse segmentation experiment are

shown in Fig. 3(b). Visually, the results are comparable to Tu’s

input

image

output

stage 0

output

stage 2

output

stage 4

(a) Texture segmentation.

input

image

output

stage 0

output

stage 2

output

stage 4

(b) Horse segmentation.

Fig. 3: Testing segmentation results using the SCI algorithm.

auto-context [9]. Note that in our case the complexity increases

with the context because the feature filters are learnt from data.

In auto-context, however, the filters are given and can have

very large support, but one needs very large sets of filters

to ensure a reasonable basis. In spite of that, our results are

remarkable considering that we utilized only 49 features, 25

from the input image and 24 from the configuration neighbors,

whereas Tu [9] selects from a set of around 12000, 8000 from

the input image and 4000 from the previous classification

output. This indicates that feature filters should be learned

from data to ensure that all available information is utilized

and they accurately fit the application. Again, the averaged

F-value curves shown in Fig. 4(right) verify our observations

quantitatively. Our best F-value in the test set is 0.834 (0.823 at

zero threshold) compared to below 0.84 using auto-context [9].

Finally, these results highlight once more the importance of

sequentially applying the different models. As shown in the

images, the first inference stages detect primarily the contours
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0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold

F
−

va
lu

e

 

 

stage 0
stage 1
stage 2
stage 3
stage 4

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.25  0.5  0.75  1

F
-v

al
ue

threshold

stage 0 
stage 1 
stage 2 
stage 3 
stage 4 

Fig. 4: F-value curves of the classification obtained from the

output of stage 4, averaged over all test images, for the (left)

texture and (right) horse segmentation.

of the horses which are easier to infer locally but fails to

discern the body of the horse because the local information is

confusing. However, using the context information from the

output of the previous models in addition to the input image,

the later stages are able to fill in the segmentation. Note that

the context information increases implicitly with each stage

because of the context on the output of the previous model.1

Learning the sequential architecture is a slow process due

to the use of back-propagation. Training all the models of

the sequential architecture took several hours for the texture

segmentation experiment, and almost 2 weeks for the horse

segmentation experiment. (Note that, in the latter case, the

training data comprises more than 10 million training feature

vectors.) On the other hand, inference is very fast taking less

than 0.25 seconds per image, compared to the 40 seconds

reported by Tu [9].

1This is similar in principle to the fact that a 3× 3 filter applied twice has
a 5 × 5 support.

IV. CONCLUSION

This paper presents the SCI algorithm as a general approach

for MRF image modeling and inference. The main advantage

of the SCI algorithm is that it allows very fast inference by

using a determined number of stages. Thus, the SCI algorithm

represents a major improvement in inference speed compared

to iterative MRF inference algorithms, such as loopy BP [2],

mean field inference [1], and relaxation labelling [3]. This

characteristic allows the SCI algorithm to be utilized in appli-

cations where, currently, the computational complexity and the

iterative or stochastic nature of current inference algorithms

prevents the use of MRF models. In addition, there is no need

to specify the feature filters since these are learned from data.

Furthermore, as shown in the results, learning the filters from

data allows for a smaller number of features to be utilized,

leading to compact and more computationally efficient models

without significantly reducing the performance.
Fast inference in the SCI algorithm comes at a price. Instead

of learning only one MRF joint distribution model, one must

learn several conditional distributions. This increases con-

siderably the computational cost of modeling. Nevertheless,

considering that in most practical applications modeling is

a one-time process and can be done offline, this seems a

beneficial trade-off in many cases. Still, in the future we plan

to explore strategies to reduce the modeling complexity.
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