
Robust 1D Barcode Recognition on Mobile Devices

Johann C. Rocholl, Sebastian Klenk, Gunther Heidemann
Intelligent Systems Department, Stuttgart University, Universitätsstrasse 38, 70569 Stuttgart

ais@informatik.uni-stuttgart.de

Abstract

In the following we will describe a novel method for
decoding linear barcodes from blurry camera images.
Our goal was to develop a algorithm that can be used
on mobile devices to recognize product numbers from
EAN or UPC barcodes.

1. Introduction

This paper describes a novel method for decoding
linear barcodes from blurry camera images. The algo-
rithm can be used on mobile devices to recognize EAN
or UPC barcodes and retrieve information from the In-
ternet without input from the user.

Conventional decoders for linear barcodes are based
on detecting the edges between bars and spaces. How-
ever, the specific locations of these edges may change
or become undetectable if the input is very blurry. This
is a problem for mobile devices with fixed-focus lenses.
Their cameras are not designed to focus correctly in the
macro range, which is required for capturing barcodes.

The proposed algorithm locates the barcode in the
camera image and extracts a scan line of brightness val-
ues. It simulates the blurry barcode according to a math-
ematical model and chooses digits for which the simu-
lation best approximates the camera input.

A prototype was implemented to recognize UPC-A
and EAN-13 barcodes on the Apple iPhone and on the
MacBook, using their built-in cameras. The decoder
was tested with several hundred images from different
cameras. The proposed method correctly recognizes a
high percentage of blurry barcode images. The perfor-
mance of the prototype is also compared to four dif-
ferent existing decoders for linear barcodes, with good
results.

Challenges Mobile devices have limited processing
power and memory, because of size constraints and
battery usage. The iPhone for example has an ARM

processor running with a clock rate of 400 MHz and
128MB of system RAM [2]. This seems sufficient for
simple computer vision tasks, but not for computational
intensive algorithms.

Figure 1. Image of ISBN-13 barcode, cap-
tured with the iPhone

Many cameras used in mobile devices, including the
iPhone, have a fixed focus lens. They are not designed
for macro photos and produce blurry pictures if the dis-
tance between camera and object is less than 20cm.
EAN-13 barcodes are usually printed less than 5cm
wide. If the camera is distant enough to avoid macro
blur, the barcode will appear too small and the resolu-
tion will be too low for decoding.

Figure 1 shows an example of an ISBN-13 bar-
code that was captured with the iPhone’s built-in cam-
era. The camera blur is severe: bars and spaces are
blurred together, forming ranges of varying brightness.
The edges between bars and spaces cannot be detected.
The image also contains some perspective distortion be-
cause the camera was not exactly in front of the center
of the barcode.

Related work Working with highly blurred images,
Esedoglu et. al. and Wittman et. al. present approaches
to barcode deblurring by blind deconvolution [1, 7].
These are very processing intense and therefore infeasi-
bly expensive on mobile hardware. Wang et. al. present
a method based on wavelet feature extraction and sta-
tistical recognition [6, 5]. We try to avoid the statistical
approach and rather estimate the digits directly.

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.664

2704

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.664

2716

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.664

2712

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.664

2712

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.664

2712

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 100 200 300 400 500 600 700 800 900 1000

input
guess

simulated

Figure 2. Input and output of the blurry
barcode simulation

2 Locating the barcode

The first step for locating the barcode is to find a
straight line that intersects all bars. It does not have to
be perpendicular to the bars, but it must go across the
entire barcode.

One possible solution is to display this line through
the middle of a live camera preview and require the user
to move the camera and/or target until the line intersects
all barcode stripes. This approach has two advantages.
First and foremost, the user experience benefits from the
visual clue and live feedback because it is immediately
obvious how the barcode should be captured.

3 Blurry barcode model

In order to guess barcode digits, the blurry barcode
must be simulated according to a mathematical model.
The results of the simulation can then be compared to
the camera input to find matching digits. This section
describes the model and the parameters of the blurry
barcode simulation.

Continuous scan line After the barcode has been
located, processing can be restricted to monochrome
brightness values on a scan line across the barcode area.
The region of interest (XROI = [lROI, rROI]) is an inter-
val from one quiet zone to the other. Its endpoints are
denoted by lROI and rROI respectively. For example,
lROI = 65 and rROI = 930 in figure 2.

The waveform of brightness values on the scan line
can be expressed as a continuous function over the re-
gion of interest. Several similar functions are intro-
duced throughout this chapter. They all have the same
domain and codomain, and are denoted by f with a sub-
script. Here the subscript “cam” stands for the camera
input. It is shown as the red curve in figure 2.

fcam : XROI → [0, 1]

Brightness is expressed in the range from zero to one,

with 0.0 designating bright white (spaces) and 1.0 des-
ignating black (bars).

Perspective projection If the camera axis is not or-
thogonal to the barcode surface, one side of the barcode
may be closer to the camera and thus appear larger. This
results in horizontal offset for the positions of the bars
and digits, because the bars appear wider on the near
side and narrower on the far side.

We model the perspective projection in a Cartesian
coordinate system with the origin at the middle of the
barcode The projection plane is the x axis. For the pur-
pose of this subsection, the barcode area is normalized
so that x = −1 indicates the left side and x = 1 indi-
cates the right side of the barcode.

Let d denote the distance between the camera and
the center of the barcode, or more precisely the ratio
between the camera distance and half the width of the
barcode. The value of d is unchanged if both the camera
distance and the size of the barcode are doubled. The
camera is placed on the y axis at y = −d.

Next we define a parameter u ∈ R that is linear
across the barcode and goes from u = −1 at the left
side of the barcode to u = 1 at the right side. Using the
angle α between the barcode and the projection plane,
the coordinates of the interior points of the barcode can
be expressed like this:

xu = u cos α yu = u sin α

Now we can formulate the camera ray as a straight
line through the camera and a barcode point. The x-
intercept of this line gives the projection point p(u). It
is the abscissa of the intersection of the camera ray and
the projection plane.

y =
d + u sin α

u cos α
x− d p(u) =

d · u cos α

d + u sin α

To use this projection for estimating the locations of bits
between the edges of the barcode l and r, we need a
normalized projection function s that satisfies s(0) = l
and s(95) = r. The following definition achieves that
by scaling the function argument to the interval [−1, 1]
and the result to [l, r]:

s(i) = l + (r − l)
p(−1 + 2

95 i)− p(−1)
p(1)− p(−1)

Non-uniform illumination The background bright-
ness and contrast may change across the region of inter-
est. This can be modeled by two continuous functions
for the white and black level across the scan line, called

27052717271327132713

fwhite and fblack respectively. The barcode guess (be-
fore blurring) alternates between the values of these two
functions, according to the bit pattern.

fguess(x) =
{

fblack(x) for high bits
fwhite(x) for low bits

A good initial estimate for the white level is a straight
line that passes through the brightness values of the
quiet zones on the left and right side of the barcode. For
the black level, the current implementation uses a con-
stant (horizontal) line at the 95th percentile of bright-
ness values in the barcode area.

Gaussian blur Typical camera blur can be simulated
by convolution with a Gaussian kernel.

The camera blur can be simulated by a convolution
of the guessed bit pattern with a Gaussian kernel.

fsim = G ∗ fguess with G(x) =
1√
2πσ

e−
x2

2σ2

Residual For each digit, the difference is computed
between the result of the simulation and the brightness
values from the camera input, using the sum of squares:

ei =
∫ ri

li

(fsim(x)− fcam(x))2dx

The values li and ri are the estimated locations of the
edges between digits, based on the function s that mod-
els perspective projection.

4 Decoding

The traditional method for decoding linear barcodes
is to find the edge locations between bars and spaces.
This approach fails when the blurring is severe, i.e.
when the standard deviation of the blurring kernel is
greater than the module size (the width of the thinnest
bars or spaces). In this case, the separate peaks and val-
leys in the gray value curve disappear. The input con-
sists of varying shades of gray, rather than black bars
and white spaces. Even if the inverse of the blurring ker-
nel could be found, the presence of noise makes it im-
possible to derive the original barcode from the blurry
picture. Because the edge locations cannot be deter-
mined reliably, a different approach is required for ro-
bust decoding.

This work proposes to estimate the boundaries of the
12 digits in the barcode, and to guess each digit sep-
arately, as there are only 10 possible choices for each
digit in a UPC barcode. EAN-13 uses two possible
codes for the third through seventh digit to specify the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

1 2 3 4 5 6 7 8 90

Figure 3. One possible code with scan line
and blurry barcode model

extra first digit, so there are 20 possible choices. But
many invalid guesses can be eliminated because there
are only 10 valid combinations, see [4].

4.1 Guessing digits

After the parameters of the barcode model have been
estimated, we can attempt to guess each of the digits
by setting the corresponding seven bits, blurring with
a Gaussian kernel, and comparing the result with the
input.

Figure 3 shows one possible code for the digits from
0 to 9. The blue graph is the bit pattern, showing the
seven code bits for each digit. The module size (width
of one bit) is roughly 14 samples in these graphs be-
cause each digit occupies 100 samples.

The green and red curves in figure 3 are the results
of Gaussian blurring with a standard deviation param-
eter of σ = 10 samples and σ = 20 samples, respec-
tively. This demonstrates the effects of blurring: if the
standard deviation is smaller than the module size, the
distinct peaks and valleys are preserved, but they are
joined together for larger amounts of blur. The blurring
requires additional input on the left and right of each
digit, half the width of the Gaussian kernel. Some of
these bits may be unknown because those neighboring
digits have not been guessed yet. But the left, right and
middle guard bars are known, as well as the first and
last bit in each digit. The six digits on the left side of
the middle guard all start with a space (white) and end
with a bar (black), and conversely on the right side. The
inner five bits can be set to gray, as the average between
the black and white brightness levels. It is even better
(but less obvious when plotted) to copy the input gray
values as initial guesses for the inner five bits. For iter-
ative adjustment, each additional pass can use the bits
that were guessed in the previous pass.

Checksum The last digit of the EAN-13 (and thus
also UPC-A) is a check digit that can be used to detect
when a barcode was decoded incorrectly. The check-

27062718271427142714

sum is calculated as a weighted sum of all other digits
modulo 10, with different weights for the digits at odd
and even positions.

d13 ≡ 10−
6∑

i=1

(3d2i−1 + d2i) mod 10

If only one digit is incorrect, there will be a checksum
mismatch. If several digits are incorrect, it is possible
that the checksum will report a false match because the
separate errors may cancel each other out.

Codes A and B The limited number of choices for
the first digit of the EAN-13 barcode can also be used
to reject invalid combinations of A and B codes for the
digits d3 to d7. For example, there is no case where
d3 to d7 would all use the B code, so that result would
have to be incorrect. Some of the digits would need to
be changed to generate a valid result.

5 Test results

To evaluate the reliability of the proposed method, it
was tested with barcode images from several different
cameras. The prototype is also compared to four exist-
ing decoders with a smaller selection of test images.

Test suite We collected a test suite of 466 images. It
includes barcodes of grocery and retail products, books,
CDs, and DVDs. Table 1 shows test results for the pro-

Image source Total Correct Success
iPhone 112 66 58.9%
iPhone, macro lns. 113 93 82.3%
Sony Ericsson T650i 121 96 79.3%
PDAbar correct 76 64 84.2%
PDAbar not found 44 21 47.7%
All test images 466 340 73.0%

Table 1. Test results for five sets of test
images

totype decoder on five sets of test images. The first two
sets were captured with an iPhone using the built-in
camera. For the second set, the sharpness of the im-
ages was improved by a Griffin Clarifi protective case
with macro lens. The third set of images was taken with
a Sony Ericsson T650i camera phone with auto-focus
lens. The focus mode on the phone was set to “macro”
for most of the images in this set, but the automatic fo-
cus was not always accurate, so there are also several
blurry images.

The last two sets of test images were provided by
the developers of the PDAbar library [3]. Their decoder
correctly recognized the barcodes in the “correct” set
but rejected the images in the other set because they are
out of focus or contain reflections.

Comparison with other solutions A smaller set of
60 images was selected from the large test suite. It con-
tains images of 20 UPC-A barcodes, 20 EAN-13 bar-
codes, and 20 ISBN-13 barcodes, some of which are
accompanied by an EAN-5 barcode for the suggested
retail price. Each of these 60 images was processed
with the thesis prototype and four different existing de-
coders. The test images cover a wide variety of prob-
lematic test cases, including non-uniform illumination,
perspective distortion and camera blur. The detection
results between 80% and 95% indicate a clear advan-
tage of our prototype as compared to PDAbar (up to
60%) and the Delicious Library1 (65% − 80%).

6 Discussion

As the prototype was developed to cope with highly
distorted images, the successful decoding rates in the
comparison indicate that the proposed method can cor-
rectly recognize barcodes with higher levels of blur and
perspective distortion than existing solutions. Despite
these encouraging results there are still some tasks left.
Especially the detection of clear but otherwise trans-
formed barcodes (for example rotated images) is an im-
portant requirement for an everyday solution.

References

[1] S. Esedoglu. Blind deconvolution of bar code signals.
Inverse Problems, 20:121–135, Feb. 2004.

[2] C. Hockenberry. What the iPhone specs don’t tell you...
furbo.org, Aug. 2007. Last checked Apr. 11, 2009.

[3] A. Kritzner. PDAbar-Bibliothek. Logic Way GmbH,
Schwerin, 2008. Last checked Apr. 14, 2009.

[4] T. Pavlidis, J. Swartz, and Y. P. Wang. Fundamentals
of bar code information theory. Computer, 23(4):74–86,
1990.

[5] K.-Q. Wang, Y.-M. Zou, and H. Wang. Bar code reading
from images captured by camera phones. IEE Conference
Publications, 2005(CP496):42, Nov. 2005.

[6] K.-Q. Wang, Y.-M. Zou, and H. Wang. 1D bar code read-
ing on camera phones. Int. J. Image Graphics, 7(3):529–
550, 2007.

[7] T. Wittman. Lost in the supermarket: Decoding blurry
barcodes. SIAM News, 37(7), Sept. 2004.

1Delicious Library,Delicious Monster http://www.
delcicious-monster.com/

27072719271527152715

