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Abstract

In this work, we propose a two-stage classifier
based on the analysis of the heart sound’s com-
plexity for murmur identification and classification.
The first stage of the classifier verifies if the heart
sound (HS) exhibits murmurs. To this end, the
chaotic nature of the signal is assessed using the
Lyapunov exponents (LEs). The second stage of
the method is devoted to the classification of the
type of murmur. In opposition to current state of
the art methods for murmur classification, a re-
duced set of features is proposed. This set includes
both well-known as well as new features designed
to capture the morphological and the chaotic nature
of murmurs. The classification scheme is evaluated
with three classification methods: Learning Vector
Quantization, Gaussian Mixture Models and Sup-
port Vector Machines. The achieved results are
comparable to reported results in literature, while
relying on a significant smaller set of features.

1. Introduction

Auscultation is the preferred method for heart
valve disorders diagnosis [3]. To develop medical
decision support systems based on HS analysis, it
is important to develop automatic analysis tech-
niques, particularly segmentation of heart sound
into its main components (i.e., S1, S2 and mur-
mur) and their recognition. Heart murmur classi-
fication has been attempted with various pattern
recognition methods. Ahlstrom et al. [1] propose
a feed-forward neural network for the discrimina-
tion of systolic heart murmurs. The feature space
suggested by these authors is composed by a to-
tal of 207 features, which are extracted using tech-
niques such as Shannon energy, wavelets, fractal
dimensions and recurrence quantification analysis.

DeGroff et al. [2] suggest a three-layered neural
network based classification scheme to distinguish
between innocent and pathological murmurs in chil-
dren. These authors use the normalized energy
spectrum of the heart sound, with various spectral
resolutions and frequency ranges, as input features.
In [4] a dynamic grown and learn neural network is
applied to classify heart sounds into normal, sys-
tolic murmur and diastolic murmur. Again a high
dimension feature vector is employed resorting to
Daubechies-2 wavelet detail coefficients at the sec-
ond decomposition level. The reported classifica-
tion accuracies of current state of the art murmur
classification methods are in the range of 86% to
97%. It should be mentioned that the reported re-
sults are not directly comparable, since no common
database was applied.

In this work, we propose a two-stage HS murmur
classification scheme based on the analysis of the
signal’s complexity. The first stage of the classifier
is intended for the verification of murmur existence
in a HS. In order to achieve this task, the signal is
transformed into a phase space representation that
is reconstructed using the embedded matrix. The
chaotic nature of the signal, assessed using the Lya-
punov exponents, is applied for murmur presence
assessment. The second stage of the method is de-
voted to the classification of the type of murmur
into seven distinct classes with clinical significance.
In opposition to current state of the art methods
for murmur classification, a reduced and physiolog-
ically meaningful set of features is proposed. This
set includes both well-known as well as new features
designed to capture the morphological and chaotic
nature of murmurs. Regarding the well-known fea-
tures, it should be mentioned that many of them
are usually not employed in the context of murmur
classification. Finally, the classification scheme is
evaluated with three distinct classification meth-
ods: Learning Vector Quantization (LVQ), Gaus-
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sian Mixture Models (GMM) and Support Vector
Machines (SVM). This approach builds on top of
a robust HS segmentation method that has been
recently introduced by the team [6].

In section 2, the two-level HS murmur classifica-
tion scheme is thoroughly described. The achieved
results using aforementioned classifiers are then an-
alyzed and discussed in Section 3. Finally, in Sec-
tion 4, conclusions are drawn and possible future
directions are pointed out.

2 Method

The first step in the process of heart murmur
classification is to detect the systolic and diastolic
regions of the heart cycle. The boundaries of mur-
murs are complimentary to the boundaries of S1
and S2 sound components, which correspond re-
spectively to the closing of the atrio-ventricular
valves and the aortic/pulmonary valves. There-
fore, finding S1 and S2’s boundaries renders the
starting and stopping points of the murmurs. In
previous works [6], we have introduced a robust HS
segmentation method. The subsequent task is to i)
evaluate if the HS sample exhibits murmurs and ii)
to classify their origin. In the proposed approach
these two problems are tackled using two sequen-
tial classifiers based on the chaos assessment of the
signal under analysis.

2.1 Murmur identification

Suppose the heart is considered as a nonlinear
dynamical system X(t + 1) = F [X(t)] that gen-
erates the heart sound time series x(t), t = 1....N .
Signal x(t) can be treated as a one dimensional pro-
jection of the unknown multidimensional dynamic
variable X(t). Phase space transformation of the
one dimensional observation x(t) is performed us-
ing the embedding theorem [6]. The method of de-
lay is applied to reconstruct the attractor in the
multidimensional space or embedding space P , i.e.
yi(t) = [x(t), x(t − τ), ....., x(t − (m − 1)τ))] ∈ IRm,
where i = 1, 2, 3...P and yi(t) are row vectors of
the embedding matrix Y (t). The τ parameter is
estimated as the time lag where the first minimum
occurs in the mutual information between data vec-
tor x(t) and x(t − τ). Using the estimated τ , the
embedded matrix dimension m is estimated by uti-
lizing Cao’s method [5].

The trajectories in the reconstructed phase space
are related to the chaotic natures of a dynamical
system and might be assessed using the Lyapunov
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Figure 1. Average Lyapunov Exponents of 20
clean heart sounds and 15 murmur with length of
88200 samples.

exponents. These reveal how the orbits on the at-
tractor move apart (or together) under the evolu-
tion of the dynamics [6]. To determine the expo-
nents from the embedded matrix, the nearest neigh-
bor points are located to measure their distance
from yi(t0) = [x(t0), x(t0−τ), ....., x(t0−(m−1)τ)).
Let L(t0) be the distance between neighbor points
and the initial points. To quantify this distance,
it is assumed that the rate of growth (or decay) of
the separation between the trajectories is exponen-
tial in time. Furthermore, it is also assumed that
at time t1, the initial length expands or shrinks to
L′(t1). The average of exponential rate of diver-
gence of close orbits is characterized by (1).

λ =
1

(tM − t0)

M
∑

k=1

log2

L′(tk)

L′(tk−1)
, (1)

where M is the number of repetitions the trajectory
takes in traversing the entire data and denotes the
LEs. The average of 150 LEs are plotted over a
number of neighborhoods in figure 1. From (1) let
λtest be the LEs of the test heart sound signal and
let λHsM

av be the expected LEs of heart sounds with
murmur. Classification is performed according to
the (2).

Heart Murmur =

{

Y es ‖ λtest − λHsM
av ‖ > th

No otherwise
,

(2)
where threshold th is averaged LEs of the heart
sounds (see in figure 1).
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2.2 Murmur classification

Accurate murmur classification demands acqui-
sition of meaningful, discriminative, features. Such
features can be categorized into several classes,
e.g., timing, shape, location, radiation, intensity,
pitch and quality or timbre. In this work, features
are grouped in 3 classes: time domain, frequency-
domain and statistical features.

2.2.1 Time-domain features:

Time domain features (5 features) are extracted
from the original murmur segment, i.e. without
performing any temporal transform. Some fea-
tures, such as timing, intensity, frequency location
over time and shape, are computed in the time
domain. These characteristics are obtained by
computing duration, loudness, and jitters [7].
Besides these features zero crossing rate and a new
feature, transition ratio, are also included.

Zero crossing rate (zcr): It is related to the
density occurrence of samples over time, and
known to be a descriptor of frequency and timbre,
computed as in (3).

zcr =
1

ne − ni

ne

∑

j=ni

|sgn(x(j)) − sgn(x(j − 1))|,

(3)
where ni and ne are starting point and stoping
point sample, respectively.

Transition ratio: It is a new feature to know
the morphology of the segments. It is computed in
a form of the ratio between two times measures as
in (4).

transition ratio =
Tasc

Tdsc

, (4)

where Tasc is the transition time taken from the
first minimum energy, in x(t)2, to the maximum
energy, and Tdsc one is from the maximum to the
second minimum energy.

2.2.2 Frequency domain features:

Frequency-domain features capture characteristics
of the signal’s timbre and morphology. In order to
compute those features, the power spectrum of the
signal is computing resorting to the periodogram.
10 frequency-domain features are extracted, as
explained below.

Spectral power : Spectral power is computed
through periodogram via summation over fre-
quency. Since the power of murmurs spreads
across various frequency regions (0-400Hz). There-
fore, to examine the dominance of spectral power
at specific frequencies, spectral power is computed
in four frequency bands: 0-0.1kHz; 0.1-0.2kHz,
0.2-0.3kHz, and 0.3-0.4kHz. Hence, 4 features
as the powers in four bands are computed by
summing over frequency.

Spectral power based features : From the basis
of the above power spectrum following features
are carried out which mainly provides murmur’s
morphology, shapes and fundamental frequencies:
centroid, flux, skewness, kurtosis for shape and
morphologies. While, spectral peaks are the
dominant frequencies [7].

2.2.3 Statistical domain features:

The distribution and scattering of samples in the
murmur is observed in using histograms and phase
space. The following features (3 features) are
computed:

Skewness and Kurtosis : Two measures, skew-
ness and kurtosis, are computed through the
histogram of the heart murmur segment.

Chaos : The maximum of Lyapunov exponents,
from (1), is taken as the quantifier of the degree of
chaos in the murmur segments.

3 Results and Discussions

Heart sounds containing murmurs were collected
from the Cardiothoracic Surgery Center of the Uni-
versity Hospital of Coimbra. Acquisition was per-
formed with an electronic stethoscope from Med-
itron. The stethoscope presents excellent signal-
to-noise ratio characteristic and an extended fre-
quency range (20 - 20,000 Hz). Sound samples
were recorded for the maximum duration of one
minute, using a 16-bit ADC at 44.1kHz sampling
rate. Heart sound were recorded from 15 healthy
subjects and from 51 subjects several types of mur-
murs. Total 3048 heart beats with murmurs and
without murmurs were included in the database.

As described previously, a two-stage hierarchical
classification approach was carried out. The one
second length of heart sound is taken to assess as
HS, or HS with murmur. In the first stage, clean
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and murmur sounds are separated. In the prepared
database, at this stage, sensitivity and specificity
of 100% are achieved.

In the second classification stage, sounds clas-
sified as murmur are further categorized into the
following 7 classes: 1) Aortic Regurgitation (AR),
2) Aortic Stenosis (AS), 3) Mitral Regurgitation
(MR), 4) Pulmonary Regurgitation (PR), 5) Pul-
monary Stenosis (PS), 6) Subaortic Stenosis +
Ventricular Septal Defect (SAS+VSD), 7) Systolic
Ejection (SE). Here, clean sounds incorrectly clas-
sified as murmur sounds in the first stage will be
assigned to one of the seven defined categories.

In the stage of classification first the feature
space dimensionality is reduced to 4 from 18 using
principal component analysis. Later, three clas-
sification methodologies (LVQ, GMM and SVM)
were employed. In all these classifiers 20-fold cross
validation technique is applied to randomly select
80% heart beats for training, while 20% beats were
taken to validate in each classification methodol-
ogy. The achieved results, i.e. sensitivities and
specificities, are averaged for classifiers constructed
different training sets.

Table 1. Classification results in terms of sensi-
tivity and specificity.

Murmur
Class

Sensitivity (%) Specificity (%)

LVQ GMM SVM LVQ GMM SVM

AS 89.84 90.60 92.63 84.32 94.80 95.80

AR 81.44 93.20 92.18 84.06 95.87 92.23

MR 74.99 96.88 93.97 75.87 92.78 91.48

PR 62.13 91.04 98.05 81.33 91.58 93.01

PS 99.68 89.23 99.76 90.89 99.10 99.86

SAS+VSD 83.34 92.09 94.66 85.50 88.30 93.56

SE 83.28 92.98 98.99 90.15 99.56 99.32

Overall 82.02 91.86 94.27 83.63 94.88 96.18

From the table 1, it can be observed that the
overall performance of GMM and SVM is nearly
similar. The observed standard deviations for sen-
sitivity and specificity using the 20-fold cross vali-
dation scheme mentioned above were, respectively,
2.67 and 4.15 for the GMM, and 3.03 and 3.39 for
the SVM classifier. Regarding sensitivity, GMM
outperformed SVM in the AR and MR classes,
whereas the reverse occurred in the PR, PS and
SE categories. As for specificity, both algorithms
performed similarly in most classes, except for AR,
where GMM stood out, and SAS+VSD, where
SVM was better.

4 Conclusions

A two-stage classifier based on the analysis of the
heart sounds complexity for murmur identification
and classification was introduced. The first stage
of the classifier verifies if the HS exhibits murmurs.
To this end, the chaotic nature of the signal is as-
sessed using the Lyapunov exponents. The second
stage of the method is devoted to the classification
of the type of murmur. For this purpose, a set
of well-known and some new features designed to
capture the morphological and the chaotic nature
of murmurs. The classification scheme is evaluated
with three classification methods: Learning Vec-
tor Quantization (LVQ), Gaussian Mixture Mod-
els (GMM) and Support Vector Machines (SVM).
While using reduced features data set, the results
are significant and comparable to the past works.
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