
A Full-View Spherical Image Format

Shigang Li and Ying Hai
Graduate School of Engineering, Tottori University, Japan

{li@ele.tottori-u.ac.jp}

Abstract

This paper proposes a full-view spherical image

format which is based on the geodesic division of a
sphere. In comparison with the conventional 3D array
representation which consists of five parallelograms,
the proposed spherical image format is a simple 2D
array representation. The algorithms of finding the
neighboring pixels given a pixel of a spherical image
and mapping between spherical coordinate and
spherical image pixel are given also.

1. Introduction

While cameras with full FOV (field of view) are
developed for map building [1], visual surveillance [2],
mobile robots and vehicles [3], it seems that the
problem of how to manage the full-view image data
for storage and processing in an efficient way is
bypassed. Figure 1 shows a pair of fisheye images
which have a wider FOV than a hemisphere,
respectively, and a full-view image can be synthesized
from these two images. Obviously, there is a lot of
redundant data in the captured raw images. The data
redundancy is caused by using a physically
rectangular image plane to capture a circular image
and the overlapping regions among multiple views.
This fact implies that managing the captured raw data
directly is not efficient. Using a camera cluster to
capture a full-view image has the same problem
because there must be overlapping regions between
the neighboring cameras so that a full-view image can
be stitched from the images captured from the cameras
with different orientations.

To cope with the above problem we propose a full-
view spherical image format which only contains the
information of the full FOV without data redundancy
and is independent of concrete imaging devices.
Captured full-view images are mapped to a spherical

image, and the data management is carried out on the
mapped spherical image.

The proposed spherical image format is based on
the geodesic division of a sphere [4], which results
that each pixel contains about the same area of view.
The proposed spherical image format is a simple 2D
array representation. Algorithms of finding the
neighboring pixels given a pixel of a spherical image
and mapping between spherical coordinate and
spherical image pixel are presented also.

This paper is organized as follows. The related
research is introduced in section 2. The details of the
proposed spherical image format are described in
section 3. Finally, we give the conclusions of this
paper in section 4.

2. Related research

To manage a spherical image in a digital computer
we need to tessellate a sphere. How to tessellate a
sphere is a basic topic in computer vision and
computer graphics. In computer graphics the art-of-
the-state technology of representing a sphere is the
cube map [5] which projects a cube onto a sphere [6].
The disadvantage of this method is the unevenness of
the resulting tessellations.
2.1. Geodesic division of a sphere

It is known that geodesic-division-based
tessellation of a sphere results in approximately
uniform cells. Figure 2 shows an icosahedron, 1-level
subdivision and 2-level subdivision of the

Figure 1 There are extra region and overlapping region in the
raw full-view image captured by a fisheye camera.

Extra Region

Overlapping Region

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.572

2329

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.572

2341

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.572

2337

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.572

2337

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.572

2337

icosahedron; the vertices of the initial icosahedron are
indicated in black, the vertices appeared newly during
the 1st–level subdivision are indicated in red, and that
appeared newly during the 2nd–level subdivision are
indicated in green. As shown in the most left figure of
Fig. 2, each vertex has six neighboring vertices, except
for twelve vertices that have five neighboring vertices.
These twelve vertices correspond to that of the
original icosahedron. This means that almost all the
pixel cells at the vertices are hexagonal in shape. This
representation is called a SCVT (Spherical Centroidal
Voronoi Tessellation) [7]. In this paper the proposed
spherical image format is based on a SCVT image.

Note that the geodesic-division-based triangle cell
is the dual of hexagonal cell of the SCVT. The vector
of a vertex of a geodesic division sphere corresponds
to the principle direction of a pixel of a SCVT image.
2.2. Data structure of SCVT image

Two kinds of data structure have been proposed for
representing a SCVT image. One is a hierarchical tree
structure [8][9]; however, the drawback of this
representation is that the adjacency relationship
between neighboring cells is not preserved. The other
is a spherical array data structure proposed in [10];
this array makes it easier and more efficient to find the
corresponding cell given a view direction, and to find
the neighboring cells given a cell on a tessellated
sphere. Since [10] is the closest research to our best
knowledge, we give more detailed introduction on this
spherical array data structure.

In [10], an icosahedron is flattened out and five
connected parallelograms are obtained, each

parallelogram consisting of four triangular faces. The
sketch of the above representation is shown in Figure
3 where one of the parallelograms is indicated as dot
red lines. The flattened-out representation is referred
to as the spherical array. Since a parallelogram can be
represented by a 2D array, the spherical array is
represented as five 2D arrays except for the two
missing vertices referred to as the zenith and the nadir.
Let index i specify a parallelogram, and let j and k
specify a vertex within the parallelogram, respectively.
The spherical array corresponds to a 3D array indexed
by),,(kji . In [10] the operation of finding
neighboring cells and mapping between spherical
coordinate and spherical cell is carried out in this 3D
spherical array.

In this paper we propose a method of representing a
SCVT image as a rectangular 2D array. The
contribution of this paper is as follows.

 A SCVT image is represented as a rectangular
2D array. The proposed representation is
understood easily by intuition.

 The simplicity of the data structure results in
efficiency of operations in a tessellated sphere.

3. Rectangular 2D spherical image format
3.1. 2D array of a SCVT image

The 2D array of the corresponding tessellated cells
of the 2-level subdivision of Fig.2 is shown in Figure
4 by arranging the cells in rows along the longitudinal
direction and in column along the latitudinal direction,
respectively; cells 1 and 12 correspond to the zenith
and the nadir, respectively. The 2D array can be
obtained also from the flatten representation of a
geodesic division sphere, shown in Fig. 3, by
arranging the cells of the five parallelograms along si
and sj without considering the shared ones. Note that
in Fig. 4 the vertices in the same row do not always
have the same latitude degree.

Suppose the number of levels of subdivision is L .
The resultant array of the vertices would have

123 +⋅ L rows, but the number of vertices in rows is

Figure 2. The process of the geodesic division of an
icosahedron.

Figure 3 The flatten representation of a geodesic
division sphere. One of the parallelograms is
indicated as red lines.

sj
j

k

1=i 2=i 3=i 4=i 5=i

si

23302342233823382338

variable from 1 to L25 ⋅ . Let i be the row number and
let iN be the number of vertices of i th row, as shown
in Figure 4. We have the following equation indicating
the number of vertices in a row.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
<<−×

≤<×
≤<

=

=
+

+

)(,1
)2(),(5

)22(,25
)20(,5

)0(,1

1

1

L

L
L

L

LLL

L

i

Ri
RiiR

i
ii

i

N
 (1)

where L
LR 23 ⋅= . The above array is called a SCVT

array in this paper.
Let the position of a vL th-level vertex be),(vv ji .

According to the rule of the geodesic subdivision its
new position at a L th-level (vLL >) subdivision
geodesic array,),(ji , is determined as follows.

v
LL

v
LL jjii vv)()(2,2 −− == . (2)

Using (2) we can determine that a vertex appears
from which level subdivision.
3.2. Finding neighboring cells

In a SCVT array the adjacency of cells between
rows is corrupted apparently although the adjacency of
cells in a row is preserved. However, the neighboring
cells between rows can be computed simply according
to the rule of geodesic division.

The vertices of geodesic division can be classified
into three types: the twelve 0-level vertices which has
five neighboring vertices (such as vertex 3), ones
which have one neighboring cell in one neighboring
row and three neighboring cells in the other
neighboring row (such as vertex 43), and ones which
have two neighboring cells in the two neighboring
rows (such as vertex 48), respectively.

Next, we give a detailed explanation on how to find
the neighboring cells of a given cell under the
subdivision level L . According to the structure of a
SCVT array the cells can be classified into three
groups, BA GG , and CG , as shown in Fig. 4. In the
following formulas, ⎣ ⎦)5/%()5//(*5/1 iiiu NjNjNJ += +

 and

⎣ ⎦)5/%()5//(*5/1 iiid NjNjNJ += −
.

 For the zenith,)0(=i , and the nadir,)(LRi = ,
their five neighboring vertices are follows,
respectively.

).4,1(),3,1(),2,1(),1,1(),0,1(
).4,1(),3,1(),2,1(),1,1(),0,1(−−−−− LLLLL RRRRR

 For the other 0-level vertices, its five neighboring
vertices are follows in terms of (2).

 If Li 2= and 02% =Lj

).,1(),)%1(,1(
),1,(),)%1(,()),5//((*5/,1(

11

1

jiNNji
jiNNjiNjNi

ii

iiii

++−+
++−−

++

−

 If 12 += Li and 02% =Lj

))).5//((*5/,1(
),1,(),)%1(,(),1,1(),,1(

1 ii

ii

NjNi
jiNNjijiji

++
++−+−−

 For the vertices belonging to group AG ,
)20(Li ≤< , and being on the edge joining the

zenith and one of the 0-level vertices,
0)5/%(=iNj , the neighboring vertices are

follows.

).1,1(),,1(),)%1(,1(
),1,(),)%1(,(),,1(

11 ++++−+
++−−

++ ddiid

iiu

JiJiNNJi
jiNNjiJi

For the vertices which satisfy with
Li 2= , 02% ≠Lj ,

).)%1(,1(),,1(
),)%1(,(),)%1(,(),)%1(,1(),,1(

11

11

++

−−

+−++
++−+−−−

ii

iiiiiuu

NNjiji
NjiNNjiNNJiJi

For the other vertices of group AG , the
neighboring vertices are follows.

).)%1(,1(),,1(
),)%1(,(),)%1(,(),)%1(,1(),,1(

1

11

+

−−

+++
++−+−−−

idd

iiiiiuu

NJiJi
NjiNNjiNNJiJi

 For the vertices belonging to group CG ,

)2(1
L

L Ri <≤+ , and being on the edge joining
the nadir and one of the 0-level vertices,

0)5/%(=iNj , the neighboring vertices are
follows.

).,1(),1,(),)%1(,(
),1,1(),,1(),)%1(,1(11

dii

uuiiu

JijiNNji
JiJiNNJi

+++−
+−−+−− −−

For the other vertices of group CG , the
neighboring vertices are follows.

).)%1(,1(),,1(
),1,(),)%1(,(),,1(),)%1(,1(

11

1

++

−

+−++
++−−+−

iidd

iiuiu

NNJiJi
jiNNjiJiNJi

 For the vertices belonging to group BG ,
)22(1+<< LL i , the neighboring vertices are

follows.

).)%1(,1(),,1(
),)%1(,(),)%1(,(),,1(),)%1(,1(

11

1

++

−

+−++
++−−+−

ii

iiii

NNjiji
NjiNNjijiNji

Note that in the above operation “%” means the
computation of the remainder. This operation is used
to cope with the vertices at the beginning or end of a
row which are adjacent to each other at the tessellated
sphere.

Figure 4. The corresponding 2D array of vertices of
the geodesic division sphere.

j

i

AG

BG

CG

23312343233923392339

3.3. Mapping between spherical coordinate
and SCVT cells

The mapping from a discrete SCVT cell to
spherical coordinate can be carried out quickly by
using a look up table. On the other hand, since the
angular interval between rows and that between the
vertices in a row is not the same, we cannot find the
corresponding vertex by only using the average of
angular interval. This means that the inverse mapping
from spherical coordinate to the nearest SCVT cell
requires a searching.

In this paper a similar searching method to [10] is
used. Given a spherical polar coordinate),(φθ , an
initial position is first estimated; then, the
corresponding SCVT cell is found by iteratively
searching a local maximum among the estimated cell
and its neighboring cells.
3.4. Representing a geodesic array as a
rectangular 2D array

In a SCVT array shown in Fig. 4 rows may include
different number of vertices. However, by the simple
operation shown in Figure 5 we can obtain a compact
rectangular 2D array which contains all the SCVT
cells except for that of the zenith and the nadir. In
practice, omitting the zenith and the nadir does not
almost give any influence to the information including
in a SCVT image by considering an image with
hundreds of thousands, or millions pixels.

Note that the algorithms of section 3.3 and 3.4 can
be modified simply based on the above rectangular 2D
array.

To test the proposed data structure we carried out
an experiment using the full view image of Fig. 1. The
converted image represented by the proposed spherical
image format is shown in Fig. 6(a). A cube image is
generated from the rectangular 2D array of Fig. 6(a)
by the method of section 3.3, as shown in Fig. 6(b).

4. Conclusions

This paper proposes a novel full-view spherical
image format which is based on the geodesic division
of a sphere, i.e., a SCVT image. The proposed
representation has the following characteristics.

 It is with approximately uniform cells in contrast
with a cube-map representation used in computer
graphics.

 It is a compact rectangular 2D array, which may
be understood easily by intuition and be
implemented simply.

How to use the proposed format for full-view
image processing is our future work.

References
[1] S. Coorg and S. Teller. Spherical mosaics with quaternions and
dense correlation. In International Journal of Computer Vision, vol.
37, pp. 259-273, 2000.
[2] N. D. Jankovic and M. D. Naish, “Developing a modular active
spherical vision system”, ICRA, 2005.
[3] S. Li, “Monitoring around a vehicle by a spherical image sensor”,
IEEE Trans. on Intelligent Transportation System, Vol.7, No.4,
pp.541-550, 2006.
[4] B.K.P. Horn, Robot Vision, MIT Press, 1986.
[5] http://www.opengl.org
[6] C. Goad, “Special purpose automatic programming for 3D
model-based vision”, in Proc. DARPA Image Understanding
Workshop, pp.94-104, 1983.
[7] Q. Du, M. Gunzburger, and L. Ju, Constrained centroidal
Voronoi tessellations on general surfaces, SIAM J. Sci. Comput.,
2003.
[8] B. K. P. Horn, “Extended Gaussian image”, Proc. IEEE, vol.72,
no. 12, pp.1671-1686, 1984.
[9] K. Ikeuchi, “Generating an interpretation tree from a cad model
for 3D-object recognition in bin-picking tasks”, Int. J. Computer
Vision, vol. 1, no. 2, pp.145-165, 1987.
[10] C.H. Chen and A.C. Kak, “A robot vision system for
recognizing 3-D objects in low-order polynomial time”, IEEE Trans.
on Systems, Man, and Cybernetics, vol.19, no.6, pp.1535-1563,
1989.

Horizontal Shift

Vertical Shift

Figure 5 The compact representation is obtained by two operations, a horizontal shift and a vertical shift, and omitting
the zenith and nadir cells.

Omitting the zenith and the nadir

Figure 6 (a) A full-view image. (b) The proposed
rectangular array representation of a tessellated sphere.
(c) The flatten cubic image generated from the
rectangular 2D array.

(a) (b)

23322344234023402340

