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Abstract 

 
This paper proposes a full-view spherical image 

format which is based on the geodesic division of a 
sphere. In comparison with the conventional 3D array 
representation which consists of five parallelograms, 
the proposed spherical image format is a simple 2D 
array representation. The algorithms of finding the 
neighboring pixels given a pixel of a spherical image 
and mapping between spherical coordinate and 
spherical image pixel are given also. 
 
 
1. Introduction 

While cameras with full FOV (field of view) are 
developed for map building [1], visual surveillance [2], 
mobile robots and vehicles [3], it seems that the 
problem of how to manage the full-view image data 
for storage and processing in an efficient way is 
bypassed. Figure 1 shows a pair of fisheye images 
which have a wider FOV than a hemisphere, 
respectively, and a full-view image can be synthesized 
from these two images. Obviously, there is a lot of 
redundant data in the captured raw images. The data 
redundancy is caused by using a physically 
rectangular image plane to capture a circular image 
and the overlapping regions among multiple views. 
This fact implies that managing the captured raw data 
directly is not efficient. Using a camera cluster to 
capture a full-view image has the same problem 
because there must be overlapping regions between 
the neighboring cameras so that a full-view image can 
be stitched from the images captured from the cameras 
with different orientations. 

To cope with the above problem we propose a full-
view spherical image format which only contains the 
information of the full FOV without data redundancy 
and is independent of concrete imaging devices. 
Captured full-view images are mapped to a spherical 

image, and the data management is carried out on the 
mapped spherical image. 

The proposed spherical image format is based on 
the geodesic division of a sphere [4], which results 
that each pixel contains about the same area of view. 
The proposed spherical image format is a simple 2D 
array representation. Algorithms of finding the 
neighboring pixels given a pixel of a spherical image 
and mapping between spherical coordinate and 
spherical image pixel are presented also. 

This paper is organized as follows. The related 
research is introduced in section 2. The details of the 
proposed spherical image format are described in 
section 3. Finally, we give the conclusions of this 
paper in section 4. 
 
2. Related research 

To manage a spherical image in a digital computer 
we need to tessellate a sphere. How to tessellate a 
sphere is a basic topic in computer vision and 
computer graphics. In computer graphics the art-of-
the-state technology of representing a sphere is the 
cube map [5] which projects a cube onto a sphere [6]. 
The disadvantage of this method is the unevenness of 
the resulting tessellations.  
2.1. Geodesic division of a sphere 

It is known that geodesic-division-based 
tessellation of a sphere results in approximately 
uniform cells. Figure 2 shows an icosahedron, 1-level 
subdivision and 2-level subdivision of the 

Figure 1 There are extra region and overlapping region in the 
raw full-view image captured by a fisheye camera. 
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icosahedron; the vertices of the initial icosahedron are 
indicated in black, the vertices appeared newly during 
the 1st–level subdivision are indicated in red, and that 
appeared newly during the 2nd–level subdivision are 
indicated in green. As shown in the most left figure of 
Fig. 2, each vertex has six neighboring vertices, except 
for twelve vertices that have five neighboring vertices. 
These twelve vertices correspond to that of the 
original icosahedron. This means that almost all the 
pixel cells at the vertices are hexagonal in shape. This 
representation is called a SCVT (Spherical Centroidal 
Voronoi Tessellation) [7]. In this paper the proposed 
spherical image format is based on a SCVT image. 

Note that the geodesic-division-based triangle cell 
is the dual of hexagonal cell of the SCVT. The vector 
of a vertex of a geodesic division sphere corresponds 
to the principle direction of a pixel of a SCVT image. 
2.2. Data structure of SCVT image 

Two kinds of data structure have been proposed for 
representing a SCVT image. One is a hierarchical tree 
structure [8][9]; however, the drawback of this 
representation is that the adjacency relationship 
between neighboring cells is not preserved. The other 
is a spherical array data structure proposed in [10]; 
this array makes it easier and more efficient to find the 
corresponding cell given a view direction, and to find 
the neighboring cells given a cell on a tessellated 
sphere. Since [10] is the closest research to our best 
knowledge, we give more detailed introduction on this 
spherical array data structure. 

In [10], an icosahedron is flattened out and five 
connected parallelograms are obtained, each 

parallelogram consisting of four triangular faces. The 
sketch of the above representation is shown in Figure 
3 where one of the parallelograms is indicated as dot 
red lines. The flattened-out representation is referred 
to as the spherical array. Since a parallelogram can be 
represented by a 2D array, the spherical array is 
represented as five 2D arrays except for the two 
missing vertices referred to as the zenith and the nadir. 
Let index i specify a parallelogram, and let j and k 
specify a vertex within the parallelogram, respectively. 
The spherical array corresponds to a 3D array indexed 
by ),,( kji . In [10] the operation of finding 
neighboring cells and mapping between spherical 
coordinate and spherical cell is carried out in this 3D 
spherical array. 

In this paper we propose a method of representing a 
SCVT image as a rectangular 2D array. The 
contribution of this paper is as follows. 

 A SCVT image is represented as a rectangular 
2D array. The proposed representation is 
understood easily by intuition. 

 The simplicity of the data structure results in 
efficiency of operations in a tessellated sphere. 

 
3. Rectangular 2D spherical image format  
3.1. 2D array of a SCVT image 

The 2D array of the corresponding tessellated cells 
of the 2-level subdivision of Fig.2 is shown in Figure 
4 by arranging the cells in rows along the longitudinal 
direction and in column along the latitudinal direction, 
respectively; cells 1 and 12 correspond to the zenith 
and the nadir, respectively. The 2D array can be 
obtained also from the flatten representation of a 
geodesic division sphere, shown in Fig. 3, by 
arranging the cells of the five parallelograms along si  
and sj without considering the shared ones. Note that 
in Fig. 4 the vertices in the same row do not always 
have the same latitude degree. 

Suppose the number of levels of subdivision is L . 
The resultant array of the vertices would have 

123 +⋅ L  rows, but the number of vertices in rows is 

Figure 2.  The process of the geodesic division of an 
icosahedron. 

Figure 3 The flatten representation of a geodesic 
division sphere. One of the parallelograms is 
indicated as red lines.
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variable from 1 to L25 ⋅ . Let i  be the row number and 
let iN  be the number of vertices of i th row, as shown 
in Figure 4. We have the following equation indicating 
the number of vertices in a row. 
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where L
LR 23 ⋅= . The above array is called a SCVT 

array in this paper. 
Let the position of a vL th-level vertex be ),( vv ji . 

According to the rule of the geodesic subdivision its 
new position at a L th-level ( vLL > ) subdivision 
geodesic array, ),( ji , is determined as follows. 

v
LL

v
LL jjii vv )()( 2,2 −− == . (2) 

Using (2) we can determine that a vertex appears 
from which level subdivision. 
3.2. Finding neighboring cells 

In a SCVT array the adjacency of cells between 
rows is corrupted apparently although the adjacency of 
cells in a row is preserved. However, the neighboring 
cells between rows can be computed simply according 
to the rule of geodesic division. 

The vertices of geodesic division can be classified 
into three types: the twelve 0-level vertices which has 
five neighboring vertices (such as vertex 3), ones 
which have one neighboring cell in one neighboring 
row and three neighboring cells in the other 
neighboring row (such as vertex 43), and ones which 
have two neighboring cells in the two neighboring 
rows (such as vertex 48), respectively. 

Next, we give a detailed explanation on how to find 
the neighboring cells of a given cell under the 
subdivision level L . According to the structure of a 
SCVT array the cells can be classified into three 
groups, BA GG ,  and CG , as shown in Fig. 4. In the 
following formulas, ⎣ ⎦ )5/%()5//(*5/1 iiiu NjNjNJ += +

 and 

⎣ ⎦ )5/%()5//(*5/1 iiid NjNjNJ += −
. 

 For the zenith, )0( =i , and the nadir, )( LRi = , 
their five neighboring vertices are follows, 
respectively. 
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 For the other 0-level vertices, its five neighboring 
vertices are follows in terms of (2). 
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 For the vertices belonging to group AG  , 
)20( Li ≤< , and being on the edge joining the 

zenith and one of the 0-level vertices, 
0)5/%( =iNj , the neighboring vertices are 

follows. 
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For the other vertices of group AG , the 
neighboring vertices are follows. 
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 For the vertices belonging to group CG , 

)2( 1
L

L Ri <≤+  , and being on the edge joining 
the nadir and one of the 0-level vertices, 

0)5/%( =iNj , the neighboring vertices are 
follows. 
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For the other vertices of group CG , the 
neighboring vertices are follows. 
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 For the vertices belonging to group BG , 
)22( 1+<< LL i  , the neighboring vertices are 

follows. 
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Note that in the above operation “%” means the 
computation of the remainder. This operation is used 
to cope with the vertices at the beginning or end of a 
row which are adjacent to each other at the tessellated 
sphere. 

Figure 4. The corresponding 2D array of vertices of 
the geodesic division sphere. 
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3.3. Mapping between spherical coordinate 
and SCVT cells 

The mapping from a discrete SCVT cell to 
spherical coordinate can be carried out quickly by 
using a look up table. On the other hand, since the 
angular interval between rows and that between the 
vertices in a row is not the same, we cannot find the 
corresponding vertex by only using the average of 
angular interval. This means that the inverse mapping 
from spherical coordinate to the nearest SCVT cell 
requires a searching. 

In this paper a similar searching method to [10] is 
used. Given a spherical polar coordinate ),( φθ , an 
initial position is first estimated; then, the 
corresponding SCVT cell is found by iteratively 
searching a local maximum among the estimated cell 
and its neighboring cells. 
3.4. Representing a geodesic array as a 
rectangular 2D array 

In a SCVT array shown in Fig. 4 rows may include 
different number of vertices. However, by the simple 
operation shown in Figure 5 we can obtain a compact 
rectangular 2D array which contains all the SCVT 
cells except for that of the zenith and the nadir. In 
practice, omitting the zenith and the nadir does not 
almost give any influence to the information including 
in a SCVT image by considering an image with 
hundreds of thousands, or millions pixels. 

Note that the algorithms of section 3.3 and 3.4 can 
be modified simply based on the above rectangular 2D 
array. 

To test the proposed data structure we carried out 
an experiment using the full view image of Fig. 1. The 
converted image represented by the proposed spherical 
image format is shown in Fig. 6(a). A cube image is 
generated from the rectangular 2D array of Fig. 6(a) 
by the method of section 3.3, as shown in Fig. 6(b). 
 
4. Conclusions 

This paper proposes a novel full-view spherical 
image format which is based on the geodesic division 
of a sphere, i.e., a SCVT image. The proposed 
representation has the following characteristics. 

 It is with approximately uniform cells in contrast 
with a cube-map representation used in computer 
graphics. 

 It is a compact rectangular 2D array, which may 
be understood easily by intuition and be 
implemented simply. 

How to use the proposed format for full-view 
image processing is our future work. 
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Horizontal Shift 

Vertical Shift 

Figure 5 The compact representation is obtained by two operations, a horizontal shift and a vertical shift, and omitting 
the zenith and nadir cells.

Omitting the zenith and the nadir 

Figure 6 (a) A full-view image. (b) The proposed 
rectangular array representation of a tessellated sphere. 
(c) The flatten cubic image generated from the 
rectangular 2D array. 
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