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Abstract

We present a study of designing compact recogniz-
ers of handwritten Chinese characters using multiple-
prototype based classifiers. A modified Quickprop al-
gorithm is proposed to optimize a sample-separation-
margin based minimum classification error objective
function. Split vector quantization technique is used to
compress classifier parameters. Benchmark results are
reported for classifiers with different footprints trained
from about 10 million samples on a recognition task
with a vocabulary of 9282 character classes which in-
clude 9119 Chinese characters, 62 alphanumeric char-
acters, 101 punctuation marks and symbols.

1. Introduction

In the past decade, it has been demonstrated by
several research groups that multiple-prototype (MP)
based classifiers trained with minimum classification er-
ror (MCE) criteria [8] and compressed with split vec-
tor quantization (VQ) technique [5] can offer a practi-
cal solution to recognizing both printed (e.g., [7]) and
handwritten (e.g., [4]) Chinese characters with a good
tradeoff among three design factors, namely recognition
accuracy, footprint, and recognition time. Recently, a
new sample-separation-margin (SSM) based MCE cri-
terion was proposed for training MP-based classifiers in
[6]. Comparative experiments were conducted for clas-
sifiers trained with 3 different MCE criteria from about
700K samples on a handwriting recognition task with
a vocabulary of 2965 Japanese Kanji characters. Ex-
perimental results demonstrate that SSM-based MCE
training achieves significant character recognition er-
ror rate reduction compared with two traditional MCE
training criteria. In order to verify whether this conclu-
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sion is true for other tasks as well, in this study new
experiments are conducted on a recognition task with
a much larger vocabulary and much more training and
testing samples. To improve the throughput of experi-
ments and take advantage of the computational capabil-
ity offered by the cluster computing infrastructure we
can access, a batch-mode Quickprop algorithm [2] is
adopted for MCE training while in [6], a sequential gra-
dient descent algorithm (a.k.a. generalized probabilistic
descent, GPD [8]) was used. It is observed that MCE-
trained classifiers with a traditional Quickprop imple-
mentation as described in [10] achieve slightly worse
recognition accuracy than that of GPD. We therefore
proposed a modified Quickprop algorithm which can
bridge the above performance gap. Furthermore, split
VQ technique is used to compress classifier parame-
ters so that compact recognizers with different foot-
prints can be constructed. The purpose of this paper
is to report research findings and benchmark results we
obtained in the above study.

The rest of this paper is organized as follows. A brief
introduction of MP-based classifier and different MCE
training criteria are presented in Section 2. The modi-
fied Quickprop algorithm is described in Section 3. The
classifier compression procedure is given in Section 4.
Experimental results are reported in Section 5. Finally,
the paper is concluded in Section 6.

2. Classifiers and MCE Training Criteria

Suppose our classifier is expected to distinguish M
character classes denoted as {Ci|i = 1, · · · ,M}. We
are given a set of training feature vectors X = {xr ∈
RD|r = 1, · · · , R} together with their labels I =
{ir|r = 1, · · · , R}. For MP-based classifiers, each
class Ci is represented by Ki prototypes, λi = {mik ∈
RD|k = 1, · · · , Ki}, where mik is the kth prototype
of the ith class. We use Λ = {λi} to denote the set
of prototypes. In classification stage, a feature vector
x ∈ RD is first extracted. Then x is compared with
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each of the M class models and a discriminant function
using Euclidean distance as the dissimilarity measure is
computed for each class Ci as follows:

gi(x; λi) = −min
k
‖x−mik‖2 . (1)

The class with the maximum discriminant score is cho-
sen as the recognized class r(x;Λ), i.e.,

r(x;Λ) = arg max
i

gi(x; λi) . (2)

In training stage, classifier parameters Λ can be es-
timated by minimizing the following MCE objective
function [8]:

`(X , I;Λ) =
1
R

R∑
r=1

1
1 + exp[−αd(xr, ir;Λ) + β]

(3)
where d(xr, ir;Λ) is a so-called misclassification mea-
sure, and α, β are two control parameters. As discussed
in [6], any of the following three misclassification mea-
sures can be plugged into Eq. (3) to form a specific
MCE criterion:

d(xr, ir;Λ) = −gir (xr; λir ) + gq(xr; λq) (4)

d(xr, ir;Λ) =
gir

(xr;λir
)− gq(xr; λq)

gir (xr;λir ) + gq(xr; λq)
(5)

d(xr, ir;Λ) =
−gir (xr;λir ) + gq(xr; λq)

‖mir k̂ −mqk‖
(6)

where

k̂ = arg min
k
‖xr −mirk‖2,

q = arg max
i∈Mr

gi(xr;λi),

k = arg min
k
‖xr −mqk‖2 ,

and Mr is the hypothesis space for the rth sample, ex-
cluding the true label ir. Following the convention in
[6], the resultant MCE criteria are referred to as MCE1,
MCE2, and MCE3, respectively.

3. Optimization Procedure

In this study, we propose to use the following mod-
ified Quickprop procedure to optimize the objective
function in Eq. (3):

Step 1: Let t = 1. Calculate the derivative of
`(X , I;Λ) w.r.t. each mikd and update it by

m
(t+1)
ikd = m

(t)
ikd − ε0

∂`(X , I;Λ(t))
∂mikd

,

where mikd is the d-th element of mik,
∂`(X ,I;Λ(t))

∂mikd

M= ∂`(X ,I;Λ)
∂mikd

|Λ=Λ(t) , and ε0 is an ini-
tial learning rate set empirically.

Step 2: Let t ← t + 1. Calculate the approximate sec-
ond derivative of `(X , I;Λ) w.r.t. each mikd as
follows:

∂2`(X , I;Λ(t))

∂m2
ikd

≈
∂`(X ,I;Λ(t))

∂mikd
− ∂`(X ,I;Λ(t−1))

∂mikd

m
(t)
ikd −m

(t−1)
ikd

.

(7)

Step 3: Calculate update step differently depending on
the following cases:

• If ∂2`(X ,I;Λ(t))
∂m2

ikd
> 0 and the sign of gradi-

ent ∂`(X ,I;Λ(t))
∂mikd

differs from that of ∂`(X ,I;Λ(t−1))
∂mikd

,
then the following Newton step is used:

δtmikd = −∂`(X , I;Λ(t))

∂mikd
/
∂2`(X , I;Λ(t))

∂m2
ikd

, (8)

where δtmikd denotes the update step of mikd.

• If ∂2`(X ,I;Λ(t))
∂m2

ikd
> 0 and ∂`(X ,I;Λ(t))

∂mikd
and

∂`(X ,I;Λ(t−1))
∂mikd

have the same sign, the following
modified Newton step is used:

δtmikd = −
(

1/
∂2`(X , I;Λ(t))

∂m2
ikd

+ εt

)
∂`(X , I;Λ(t))

∂mikd

(9)
with εt being a learning rate set as εt = ε0(1 −
t/TQ), where TQ is the total number of iterations
to be performed.

• If ∂2`(X ,I;Λ(t))
∂m2

ikd
< 0 or the magnitude of δtmikd

is too small, backoff to gradient descent by setting
the update step as follows:

δtmikd = −εt
∂`(X , I;Λ(t))

∂mikd
. (10)

Step 4: If |δtmikd| > limit×|δt−1mikd|, set δtmikd =
sign(δtmikd)× limit×|δt−1mikd| to limit the ab-
solute update step size, where limit is a control
parameter and set as 1.75 in our experiments.

Step 5: Update mikd by m
(t+1)
ikd ← m

(t)
ikd + δtmikd.

Step 6: Repeat Step 2 to Step 5 TQ − 1 times.

Step 7: Repeat Step 1 to Step 6 TR − 1 times.

Due to space limitation, the formulas of relevant deriva-
tive calculation are omitted. Because the above proce-
dure works in batch mode, it can be easily parallelized,
for example, by using multiple computers to calculate
the derivative in Step 1. Our procedure is similar to the
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Quickprop implementation described in [10] except for
adding Step 7 whose rationale will be explained in the
following.

Quickprop approximates the Hessian matrix by as-
suming it is a diagonal matrix, i.e.,

H =
∂`2(X , I;Λ)

∂Λ∂ΛT
≈ diag(H) , (11)

where diag(H) means setting all the off-diagonal ele-
ments in H to zero. Therefore, when Λ(t) is approach-
ing to the minimum point, the step size calculated by
Eq. (8) is quite small, compared with the step size com-
puted by Newton’s method whose convergence rate is
quadratic near the minimum point, since

‖δΛ‖ = ‖diag(H)‖−1‖g‖ ≤ ‖H‖−1‖g‖ ,

where g = ∂`(X ,I;Λ)
∂Λ . The inequality holds because for

semi-positive definite matrix H , ‖diag(H)‖ ≥ ‖H‖
(Hadamard’s inequality). The underestimation problem
becomes more severe when the dimension of H , which
equals to the number of parameters in Λ, is quite large
(In our case there are about 1 millon parameters in Λ).
In fact, we observed that the element of Hessian ma-
trix estimated by Eq. (7) is often unreasonably large,
therefore making the updating step size calculated by
Eq. (8) almost zero. Moreover, for some mikd’s, once
the updating size is nearly zero, the subsequent itera-
tions will not affect mikd either because of the limits of
updating step size imposed in Step 4. Our modification
may be the simplest method to alleviate this problem,
which is to periodically restart the procedure from gra-
dient descent, i.e., back to Step 1 every TQ traditional
Quickprop iterations. How to solve this problem more
elegantly is still an open question, which will be a topic
for future research.

4. Compression of Classifier Parameters

As in [7, 4], we use the split VQ technique [5] to
compress the MP-based classifier parameters as fol-
lows. Each prototype mik ∈ RD is first split into S
sub-vectors, where the dimension of the sth sub-vector,
m

(s)
ik , is Ds, i.e., D =

∑S
s=1 Ds. Then for each set

of sub-vectors {m(s)
ik |i = 1, · · · ,M ; k = 1, · · · ,Ki},

the LBG clustering algorithm [9] is used to generate
a codebook with 256 codewords using Euclidean dis-
tance as the distortion measure. Each codeword is a Ds-
dimensional vector, whose elements are represented by
Ds 4-byte floating-point numbers, while the index for
each codeword is a single-byte unsigned integer which
explains why the codebook size is 256. In total, it takes
S×∑M

i=1 Ki bytes to store the indices and 4×D×256
bytes to store the codebooks.

Table 1. Comparison of recognition accuracies (in %)
on “JPN” task of MP-based classifiers trained by using
MCE3 criterion with different optimization methods:
GPD vs. Quickprop.

Optimization Methods Ki = 2 Ki = 4
GPD 98.36 98.35

Quickprop (TR = 1) 98.20 98.22
Quickprop (TR = 2) 98.25 98.27
Quickprop (TR = 3) 98.31 98.31

5. Experiments and Results

5.1 Experiments on a Medium-Scale Task

To debug the code of new Quickprop implementa-
tion, the first set of experiments are conducted on a
handwriting recognition task with a vocabulary of 2965
Japanese Kanji characters. The experimental setup is
exactly the same as in [6]. This task is referred to as
“JPN” hereinafter. Two optimization methods, GPD
and Quickprop, are compared using MCE3 criterion.
Starting from the LBG-trained prototype parameters,
GPD and Quickprop algorithms are used to optimize
classifier parameters Λ. The control parameters for
Quickprop experiments are set as follows: α = 7 ,
β = 0, ε0 = 0.1, and TQ = 20. Results are sum-
marized in Table 1. It is observed that periodically
restarting the Quickprop procedure from gradient de-
scent improves the recognition accuracy. After three
cycles (TR = 3), the recognition accuracy achieved
by Quickprop is comparable to that achieved by GPD.
Since most of the computation is spent on the calcula-
tion of the loss function and its gradient, which can be
parallelized for Quickprop, the Quickprop experiments
can be completed in much shorter time than its GPD
counterparts: for example, the training time can be re-
duced from days for GPD run on a single CPU to hours
for Quickprop run on 40 CPUs, namely a speedup of 20
to 30 times in this case.

5.2 Experiments on a Large-Scale Task

The remaining experiments are conducted on a much
larger scale task of recognizing isolated online hand-
written characters. The recognition vocabulary consists
of 9282 character classes which include 9119 Chinese
characters, 62 alphanumeric characters, 101 punctua-
tion marks and symbols. An in-house developed corpus
is used. The training set contains 9,795,394 character
samples. The testing set contains 614,369 handwriting
samples, which is further divided into two subsets ac-
cording to the writing style (cursive or regular) of each
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Table 2. Comparison of recognition accuracies (in %)
on two different test sets of “CHS” task of MP-based
classifiers trained by three different MCE criteria.

MCE Criterion Regular Cursive
MCE1 97.8 92.4
MCE2 97.8 92.1
MCE3 97.9 92.7

testing sample as follows: 1) Cursive: 431,546 sam-
ples from 3,863 character classes; 2) Regular: 182,823
samples from 6,763 character classes. It is observed that
there are much more regular-style training samples than
the cursive ones. We therefore selectively duplicated
some cursive-style training samples to avoid the pos-
sible bias of the MCE-trained classifiers to work well
only for regular-style samples. After this resampling,
the total number of training samples is about 12 millon.
This task is referred to as “CHS” hereinafter. As for fea-
ture extraction, a 512-dimensional raw feature vector y
is first extracted from each handwriting sample by us-
ing the procedure described in [1]. Then we use an LDA
transformation matrix estimated from the training data
to transform y into a new 128-dimensional feature vec-
tor x. The number of prototypes Ki is set as 2 for 3,755
most frequently used Chinese characters and 1 for the
rest of character classes.

In the second set of experiments, we use the pro-
posed modified Quickprop procedure to optimize three
different objective functions, namely MCE1, MCE2
and MCE3 respectively. The control parameters are
set as follows: α is 7, 20 and 1.5 for MCE1, MCE2
and MCE3 respectively; β is 0; TQ is 20 and TR is 3;
ε0 = 0.1. Experimental results are summarized in Table
2. It is observed that MCE3 criterion performs consis-
tently better than the other two criteria.

Finally, in the third set of experiments, we take the
MCE3-trained MP model in the second set of experi-
ments to do model compression as described in Section
4. Table 3 compares the accuracy-footprint tradeoff of 4
classifiers, where “128× 1” and “64× 2” mean that the
sub-vector dimension in split VQ is 1 and 2 respectively,
“32×2+16×4” means that the sub-vector dimension is
2 for the first 64 dimensions and 4 for the remaining 64
dimensions. After compression, only a minor drop in
recognition accuracies is observed, but footprints of the
corresponding classifiers can be reduced dramatically.

6. Conclusion

It is clear from the above experimental results that
MP-based classifiers trained by using the SSM-based
MCE criterion (i.e., MCE3) with the proposed modi-

Table 3. Comparison of recognition accuracies (in %,
on two different test sets of “CHS” task) and footprint
(in MB) of several MP-based classifiers.

Setup Regular Cursive Footprint
No Compression 97.9 92.7 6.37

128× 1 98.0 92.4 1.72
64× 1 97.7 92.2 0.92

32× 2 + 16× 4 97.6 92.0 0.72

fied Quickprop procedure can achieve promising recog-
nition accuracies, while such classifiers can be made
very compact by using split VQ compression. Com-
bined with the fast-match technique as described in [3],
an efficient and compact handwriting recognizer can be
constructed. Such a recognizer can be deployed alone
or combined further with other compact classifiers to of-
fer a good handwriting recognition solution on mobile
devices with limited memory for East Asian languages
such as Chinese, Japanese, and Korean.
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