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Abstract 
 
Fingerprint orientation plays important roles in fingerprint 

recognition. This paper proposes a framework for modeling the 
fingerprint orientation field based on the variational principle. 
The proposed method does not require any prior information 
about the structure of acquired fingerprints. Comparison has 
been made with respect to state-of-the-arts in fingerprint 
orientation modeling. 
 
 

1. Introduction 
 

In the recent a few years, with the increasing concern on 
security, the pace of developing and deploying biometrics 
technology, in particular the fingerprint based technology, has 
been accelerated tremendously in a wide range of areas from 
government, defense, air port security, to commercial services.  
In spite of the wide application of fingerprint technology to our 
daily life, there remain several issues which have not been 
adequately addressed. Among them, how to recognize 
fingerprints acquired with poor quality is still a challenging 
problem. Key to this problem is to enhance the fingerprint 
image before the process of recognition. A number of research 
efforts have been put on this topic and a wealth of techniques 
has been proposed [1] [2]. Instead of directly employing 
generic methods in image enhancement for improving the 
fingerprint image quality, most fingerprint enhancement 
methods are based on the characteristic structure within the 
fingerprint, which have been proven to be more effective in 
practice. One of the most important features in the fingerprint is 
the highly parallel oriented pattern, and for this reason there are 
intensive research interests on fingerprint orientation modeling. 

In general, fingerprint orientation modeling starts from a 
local estimation of the orientation, followed by a refining 
process where prior knowledge or information from a larger 
scale will be employed. The local estimation can simply be 
based on the image gradient, or be derived from more 
sophisticated methods such as statistical techniques [3] [4], 
filter-bank [5], ridge projection [6], structure tensor [7], 

integration operator [8] or local voting [9]. After that, a global 
model can be built and applied in turn to local predictions. A 
pioneered work in this direction was presented by Sherlock and 
Monro in 1993 [10], where the orientation field is described by 
a zero-pole model. The model is formulated in the complex 
plane with the core point as zero and the delta point as pole. In 
general, the zero-pole model is almost perfect in regions near 
singular points, but often unsatisfactory in other regions. An 
improvement was made by Vizcaya and Gerhardt [11] using a 
piecewise linear approximation model around singular points to 
adjust the zero and pole’s influence. Similar ideas have been 
presented in [12] [13]. Very recently, a unified framework was 
presented in [14] and most of aforementioned models can be 
regarded as special cases. 

For the above global estimation methods, they have one 
common feature; that is the dependency on the knowledge of 
singular points. However, the detection of singular points is 
never a trivial issue and the success of the detection strongly 
relies on the quality of the derived fingerprint orientation field. 
Thus, the problem will be as complicated as the chicken-egg 
paradox. To circumvent this problem, Wang et al [15] 
presented an orientation estimation method in another way 
where the modeling problem is formulated as a data fitting 
problem and trigonometric polynomial is utilized to fit the 
orientation data as estimated by local methods. A remarkable 
feature of this model is that it does not require any prior 
knowledge of singular points. The method has been 
demonstrated to outperform the singular points dependent 
method like the combination model in fingerprint image 
enhancement. The method has recently been extended in [16], 
where Legendre polynomial is employed as the functional basis 
and moreover the issue of singularity preservation is addressed 
through minimizing a cost function. 

In this study we will present a new framework to model the 
fingerprint orientation field. The proposed method is based on 
the variational principle and need not to have the knowledge of 
explicit functional form. In addition, singularities can be 
modeled seamlessly in the framework without any prior 
knowledge. 
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2. Methods 
 
2.1 Variational Principle  
Originated by Leibniz and founded by Euler and Langrange, 
variational principle is an important method in physics for 
determining the state or dynamics of a physical system. As 
stated by Euler [17], “Since the fabric of the Universe is most 
perfect and is the work of a most wise Creator, nothing 
whatsoever takes place in the Universe in which some relation 
of maximum and minimum does not appear”. Variational 
principle seeks the solution through finding the extremum 
(minimum, maximum or saddle point) of a functional. The 
method can be expressed using the calculus of variations, which 
is a branch of mathematics dealing with integral minimization. 

The functional to be minimized can be formed as an integral 
involving unknown function f or its derivatives as follows 

[ ] ( ) .',,
2

dxffxLfJ
x

xx
∫=                                (1) 

Then the problem is to find the extremal function *f  where the 
rate of change of the functional [ ]fJ  is zero. For more details 
on the variational principle, interested readers can refer to [18]. 

Besides enormous applications of the variational principle 
to physics and chemistry, the method has also been employed 
frequently to investigate problems in computer vision, such as 
edge detection, image denoising, super-resolution image 
reconstruction, optical flow, surface reconstruction, shape from 
shading, stereo, image inpainting [19] [20]. In the following, 
we present a formulation of fingerprint orientation modeling 
using the variational principle. 
 
2.2 Variational approach to orientation modeling 
For the convenience of description, let θ denote an orientation 
field in image domain Ω  . Then, the problem in fingerprint 
orientation modeling is to reconstruct an orientation field ϕ  
such that  

(C1) ϕ is smooth and  
(C2) true singularities in θ are preserved in ϕ . 

In fingerprint image processing, directions of gradients with 
difference of π have the same effect on inference of ridge 
orientation or the design of filters. However, direct operation 
(integration/summation) will cancel out these directions. To 
avoid this problem, a common practice in fingerprint 
orientation modeling is to project θ to the complex domain and 
take the square as follows: 

( )θθ 2exp~ i=                                       (2) 
which has been termed the double angle approach in literature 
[15]. Similarly, we have 

( )ϕϕ 2exp~ i= .                                    (3) 
As will be shown in the following, the estimation of the 

orientation field can be formulated in the framework of the 
variational principle. To model the constraint (C1), it is usually 
accomplished through minimizing the derivatives of the 
function. In this study, it is modeled as 

2
1

~ϕ∇=L                                         (4) 

where • is the magnitude of the complex number. As for the 
model of the second constraint, it is given by 

( ) 2
2

~~~
ϕθθψ −=L .                           (5) 

Here ( )θψ ~ stands for a function to capture the singularity in the 
original orientation field and its value increases with respect to 
the increase of the saliency of θ~ , thus singularities in θ~ have 

 

    

     
Fig. 1 Row 1:  a low-quality fingerprint image (left) and 
orientation estimation by gradient (t=0, right), where dots 
indicate background; Row 2: orientation refined by the first 
term (kinetic energy) at t=1 (left) and 4 (right); Row 3: 
orientation refined by two energy terms at t=2 (left) and 10 
(right). 
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higher weights in determining the function .~ϕ  Combined these 
constraints together, the functional ( )ϕ~J is defined as:  

( ) ( )dxdyLLJ ∫∫Ω += 21
~ λϕ                    (6) 

where 0>λ is a regularization parameter. In the language of 
variational principle, the first term is called the kinetic energy 
and the second is the potential energy. It should be noted that 
the design of these two energy terms here is merely for the 
purpose to illustrate the fingerprint orientation modeling using 
the variational principle.  
 
2.3 Numerical implementation 
For notational convenience, let us write  

ϕ2cos=u                                    (7a) 
ϕ2sin=v                                    (7b) 

Then we have 
( )2222

1 yxyx vvuuL +++= λ                           (8a) 

( ) ( ) ( )( ),2sin2cos~ 22
2 θθθψ −+−= vuL         (8b) 

which is very similar to the gradient vector flow formulation for 
object boundary detection [21]. Substituting (7a) to (8b) to (6), 
we can derive the solution of the variational problem by solving 
the associated Euler-Lagrange equations: 

( )( ) 02cos~
=−−Δ θθψλ uu                               (9a) 

( )( ) 02sin~
=−−Δ θθψλ vv                              (9b) 

where Δ stands for the Laplacian operator. Furthermore, 
regarding the left hand side of the Euler-Lagrange equation as 
an infinite dimensional gradient, the equations (9a) and (9b) 
can be solved using the gradient descent method, which leads to 
the following equations: 

( )( )θθψλ 2cos~
−−Δ= uuut                      (10a) 

( )( ).2sin~ θθψλ −−Δ= vvvt                      (10b) 
If negating the second term, Eq. (10) is the heat equation, a 
special case of the more general diffusion equation, and λ is 
called thermal diffusivity. The derived partial differentiation 
equation can be solved using numerical methods. In this study, 
it is solved by the method of finite difference. 
 
3. Experiments  
 

To validate the performance of the proposed method, 
experiments have been carried out using publicly available 
fingerprint database, FVC 2000 Db1 [22]. For illustration, the 
function ψ is simply taken as the saliency of the original 
orientation field 

( ) ( )( )∑ −=
∈ xNxx

xx
N

x
'

.'sin1)( θθψ             (11) 

Parameter λ is set as 0.25.  

Fig. 1 presents an example of low-quality fingerprint image 
(Row 1 left). The fingerprint image is firstly segmented using 
the block-based method. If the variance of a block is large, the 
block will be considered as belonging to foreground. After that, 
morphological processing is applied to yield a contiguous 
foreground region. On the right of Row 1 shows the orientation 
field estimated by the gradient method, where the dots indicate 
the background. It can be seen that there exist quite a lot of 
places with evident incoherence among the local orientations. 
Row 2 shows the results by the heat equation, i.e., only the 
kinetic energy (KE) is taken into account. It can be seen that 
great improvement is clearly visible even after one step of 
iteration (Row 2 left). After four steps (Row 2 right), the 
random fluctuation is almost perfectly removed. Row 3 depicts 
the results when both the kinetic and the potential energy is 
incorporated, where on the left is at time 2 and on the right is at 
time 10. Compared with the KE results (Row 2), the potential 
energy term is able to preserve the structure around the 
fingerprint singular point along with the diffusion process. 
Nevertheless, when t is small (4 in this study), the difference is 
very minor. 

Table 1. Comparison of equal error rates and CPU time 
between the Fourier series and the proposed variation 
method 

 Fourier Series Variation Method 

EER (%) 5.69 5.57 

CPU time (ms) 140 16 

 

 
As aforementioned, the orientation field plays an important role 
in fingerprint image enhancement. As a way to indirectly 

 
Fig. 2 ROC curve on FVC2000 Db1, where the dotted line 
represents the proposed method and solid line the Fourier series 
modeling method. 
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measure the performance of orientation modeling, we have 
carried out matching experiment using the NIST fingerprint 
software [23] for minutia detection and matching. Fig. 2 plots 
the ROC curve based on the FVC 2000 Db1 dataset, where the 
variation method only takes into account the kinetic energy and 
the performance when both energy terms are considered is very 
similar. From Fig. 2, it can be seen that the performance 
between the proposed (dotted line) and the Fourier series 
modeling method (solid line) [15] is very close. The proposed 
method is slightly better. The equal error rates are summarized 
in Table 1, where the CPU time is also given. Both methods are 
implemented in Matlab and run in a PC with Windows XP 

operating system, 2.66GHz CPU and 2GB RAM. The proposed 
method is almost 8 times faster. 

4. Conclusion 
In this study we introduced a framework for fingerprint 

orientation modeling which is based on the variational 
principle. Different from existing methods to approximate the 
orientation using some function, the variational method needs 
no explicit form of the approximated function and the solution 
is derived implicitly from a functional space, where the desired 
features for the solution are modeled. The proposed framework 
is advantageous in terms of having less parameters and more 
freedom to preserve singularities in original fingerprints. 
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