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Abstract—The generation of cancelable and privacy preserv-
ing biometric templates is important for the pervasive deploy-
ment of biometric technology in a wide variety of applications.
This paper presents a novel approach for cancelable biometric
authentication using random multiplicative transform. The
proposed method transforms the original biometric feature
vector through element-wise multiplication with a random
vector, and the sorted index numbers of the resulting vector in
the transformed domain are stored as the biometric template.
The changeability and privacy protecting properties of the
generated biometric template are analyzed in detail. The
effectiveness of the proposed method is well supported by
extensive experimentation on a face verification problem.
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I. INTRODUCTION

Biometrics refer to the technology of recognizing or
confirming the identity of an individual based on the phys-
iological (e.g., face, fingerprint) and/or behavioral (e.g.,
gait, keystroke) characteristics. It is superior to traditional
password and token based methods in both security and
convenience. However, there exist some problems yet to be
addressed for widespread application of biometrics. Firstly,
since biometric data reflects the physiological or behavioral
characteristics of a person, the privacy concern arises. The
biometric template should be generated in a way such that
the privacy of the users can be protected even the template
is known. Secondly, Biometrics can not be easily replaced if
compromised due to the limited number of biometric traits
that human has. To alleviate this problem, the biometric
template should be changeable such that when a biometric
template is compromised, the biometric signal itself is not
lost forever, and a new one can be reissued.

A secure biometric system should offer both change-
ability and privacy protection. Moreover, the recognition
performance of the system should not be deteriorated. Many
tentative solutions have been introduced in the literature,
which can be roughly categorized as biometric crypto-
systems [1], and cancelable biometrics [2]. Comprehensive
surveys of related works can be found in [1][3]. A bio-
metric crypto-system aims at the combination of biometrics
with cryptography to produce secure templates. In general,
such methods are computationally complex and usually
suffer performance degradation. The cancelable biometrics
framework motivates the possibility of applying changeable

and irreversible transforms on the biometric features. Using
this method, every enrollment applies a different transform.
When a biometric template is compromised, a new one can
be generated by using a new transform. The major challenge
here is to preserve the similarity in the transformed domain.
A sorted index number (SIN) based approach has been
introduced in [3], which demonstrates capability of being
applied in conjunction with random transforms for producing
secure templates. The SIN method is originated from the
pairwise relation between vector elements, and it is capable
of approximating the Euclidean distance. In this paper, we
elaborate on the application of SIN method for changeable
biometric authentication using random multiplicative trans-
form (RMT). The effectiveness of the proposed method is
supported by detailed changeability and privacy analysis,
as well as extensive experimentation on a face verification
problem.

II. METHOD OVERVIEW

The proposed method assumes the extracted biometric
features being represented in continuous domain, and the
similarity of the vectors can be evaluated by some (e.g.
Euclidean) distance measures. Depending on different appli-
cation context, the proposed method can be applied in two
scenarios: user-independent (UI) and user-dependent (UD)
transform. The UI scenario applies the same transform to
all the users. The key is controlled by the service provider,
and each individual does not need to carry a key. The UD
scenario is a two-factor approach that requires both the
correct biometrics and user-specific key for authentication.
In both scenarios, the biometric template can be reproduced
by simply changing the key. The procedure of generating a
biometric template is as follows:

I Extract feature vector w ∈ R
N from face image.

II Compute u = w − w̄, where w̄ is the mean feature
vector calculated from the training data.

III Use a key k to generate a random vector r ∈ R
N ,

with each entry an i.i.d. Gaussian random variable of
mean one and variance σ2, ri ∼ N(1, σ2). Compute
x = (u + d). ∗ r, where .∗ denotes multiplication by
elements, and d is a translation vector.

IV Sort x in descending order, and store the corresponding
index numbers in a new vector g. The resulting SIN
vector g ∈ Z

M is stored as template.
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For example, given x = {x1, x2, x3, x4}, the sorted
vector in descending order is ĝ = {x4, x2, x3, x1}, then the
template is g = {4, 2, 3, 1}. The similarity measure between
two SIN vectors S(g, p), denoted as SIN distance, can be
computed as follows [3]:

1) Given two SIN vectors g ∈ Z
M and p ∈ Z

M , start
from the first element g1 of g.

2) Search for the corresponding element in p, i.e., pi = g1.
Record ξ1 = i − 1, where i is the index number in p.

3) Eliminate the obtained pi in the previous step from p,
and obtain p1 = {p1, p2, ..., pi−1, pi+1, ..., pM}.

4) Repeat step 2 and 3 on the subsequent elements of g
until gM−1. Record ξ2, ξ3, ..., ξM−1.

5) Computed S(g, p) =
∑M−1

i=1 ξi.
For example, let g = {4, 2, 3, 1} and p = {3, 2, 1, 4}, we

first search the 1st element g1 = 4, and find that p4 = 4.
Therefore ξ1 = 4 − 1 = 3. Remove p4 from p and form a
new vector of p1 = {3, 2, 1}. Search the 2nd element g2 = 2
in p1, and find that p1

2 = 2. Therefore ξ2 = 2 − 1 = 1.
Remove p1

2 from p1 and form a new vector of p2 = {3, 1}.
Search the 3rd element g3 = 3 in p2, and find that p2

1 = 3.
Therefore ξ3 = 1 − 1 = 0. Compute S(g, p) =

∑M−1
i=1 ξi =

3 + 1 + 0 = 4.

III. CHANGEABILITY ANALYSIS

The proposed method employs RMT as a changeability
mechanism, and in combination with SIN to produce privacy
protection as well. Let u ∈ R

N and v ∈ R
N represent two

biometric feature vectors. Let r ∈ R
N and s ∈ R

N denote
two random vectors, and ri ∼ N(1, σ2), si ∼ N(1, σ2). Let
x = u. ∗ r, y = v. ∗ s. If the same key (SK) is applied, i.e.,
r = s, it can be shown that:

E[‖x − y‖2] = (σ2 + 1)‖u − v‖2, (1)

Var[‖x − y‖2] = (2σ4 + 4σ2)
N∑

i=1

(ui − vi)4, (2)

Eqn. 1 and Eqn. 2 show that the RMT preserves the
mean of the squared Euclidean distance (SED) between two
vectors in the transformed domain up to a scaling factor
σ2+1, and the variance is proportional to σ2. In the different
key (DK) case, i.e., r �= s, we can derive that:

E[‖x − y‖2] = σ2(‖u‖2 + ‖v‖2) + ‖u − v‖2, (3)

Var[‖x − y‖2] = 2σ4
N∑

i=1

p2
i + 4σ2

N∑
i=1

qipi. (4)

where pi = u2
i + v2

i and qi = (ui − vi)2. To obtain
changeability, we expect that the SK and DK distributions
are well separated. Eqn. 1 can be rewritten as E[‖x−y‖2

σ2+1 ] =

‖u − v‖2, and Eqn. 3 can be rewritten as E[‖x−y‖2

σ2+1 ] =
‖u−v‖2 + 2σ2uT v

σ2+1 . It can be seen that the separation of the
distributions is dependent on the σ2 and the inner product

of the vectors. Since there is no guarantee that uT v > 0, it
is possible that the SED in the DK transformed domain is
even smaller than the original SED, i.e., weak changeability.
To solve this problem, we note that 2σ2

σ2+1 > 0, and the SED
in the DK case can be enlarged by increasing uT v. This
can be achieved by adding a vector d to all the elements
of u and v, such that uT v is augmented, and the SED of
the original vectors ‖u − v‖2 is unaltered. As such, the
distributions of SK and DK cases can be well separated,
and strong changeability can be obtained.

Since the SIN method also approximates the SED between
two vectors [3], it is expected that similar property can be
preserved by applying the SIN method on RMT transformed
vectors. This is validated through two randomly selected
unit-norm Principal Component Analysis (PCA) feature
vectors of dimensionality 100 from our experimental data
set, with each experiment performed 2000 trails. Fig. 1-
a and -b depicts the distributions of SED and normalized
SIN distance (NSD), where the NSD is obtained by dividing
the SIN distance by the largest possible value N(N−1)

2 . The
results confirm that without vector translation, the SK and
DK distributions are not well separated, and the variance
of the distances increases as σ2 increases. It is shown in
Fig. 1-c and -d that after adding an appropriate vector d
(the same value d for all the elements), the SK and DK
distributions can be well separated, and hence it can produce
strong changeability.

Note that in the UD application scenario, since different
users utilize different keys for randomness generation, the
above analysis implies that the inter-class and intra-class
distributions can be well separated, hence zero false accept
rate (FAR) and false reject rate (FRR) can both be obtained
by selecting appropriate system threshold value. It also
indicates that even the biometric is stolen, without the correct
key, the authentication will not be successful. The stolen key
case can be evaluated by setting the same key for all the
users. This is equivalent to the UI scenario. Therefore, the
performance of the system can be fully characterized and
demonstrated by the UI and UD scenarios.

IV. PRIVACY ANALYSIS

The proposed methods utilize the SIN vector of the RMT
transformed features as template for biometric recognition.
Obviously, it is impossible to recover the exact values of
any element in the transformed feature vector. However, an
adversary may be able to estimate the distribution of the
features, generate a set of random numbers based on the
distribution, and rearrange the random numbers based on the
SIN vector. As such, it is possible to provide an approximate
estimation of the original features. For simplicity, we assume
the features are i.i.d. in this paper.

Let x1, x2, ..., xN denote N i.i.d. random variables,
x1:N , x2:N , ..., xN :N denote the ordered variates, then the
mean and variance of the jth order statistic are [4]: uj:N =
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Figure 1. Distribution of (a) SED, (b) NSD, at different σ2 values; and (c) SED, and (d) NSD, at different d values (σ2 = 0.01).

∫ +∞
−∞ tfj:N (t)dt, and σ2

j:N =
∫ +∞
−∞ (t − uj:N )2fj:N (t)dt,

where fj:N (t) is the probability density function (pdf ) of
xj:N . Let x̂j:N denotes the estimation of xj:N , then E[xj:N−
x̂j:N ] = uj:N − ûj:N , and Var[xj:N − x̂j:N ] = σ2

j:N + σ̂2
j:N .

When the distribution of x is unknown, then the expected
value of the estimation is not zero since uj:N �= ûj:N . In
this case, the estimation will be less accurate and the user’s
privacy can be protected. However, it is possible that the
attacker may estimate the distribution of the original fea-
tures. Considering the worst case that the exact distribution
is known, then we have: E[xj:N − x̂j:N ] = uj:N − ûj:N = 0,
and Var[xj:N − x̂j:N ] = 2σ2

j:N . Therefore, the expected
value of xj:N − x̂j:N will be zero. Since the exact value
of any element in the original feature vector can not be
recovered, the variance of xj:N − x̂j:N can be considered
as a privacy measure. The larger the variance, the better
the privacy protected. Fig. 2 plots the variance of the order
statistics σ2

j:N as a function of vector dimensionality N (with
ux = 0, σ2

x = 1), and variance of x, σ2
x (with N = 100). It

demonstrates that the σ2
j:N become greater at lower N and

larger σ2
x.

Figure 2. Variance σ2
j:N as function of (a) dimensionality N , and

(b) variance σ2
x.

In the proposed RIM-SIN method, the SIN vector g of
RMT transformed vector x is stored as template, with each
element of x obtained by xi = ri(ui + d), i = 1, 2, ..., N ,
where ri ∼ N(1, σ2

r), ui is the ith element of feature vector

u of mean zero and variance σ2
u, and d is a translation value.

It is straightforward to derive that E[xi] = E[ri(ui+d)] = d,
E[x2

i ] = E[r2
i (ui+d)2] = (σ2

r+1)(σ2
u+d2), and the variance

of xi is σ2
x = E[x2

i ] − E[xi]2 = σ2
u(σ2

r + 1) + d2σ2
r .

Assuming the worst case that an attacker knows the
distribution of r, u, and the value of d, he can generate a set
of N random numbers of mean d and variance σ2

x, estimate
x̂ by mapping the numbers according to the SIN vector g,
perform element-wise division followed by subtraction of d
to obtain an estimate of ui as ûi = x̂i/ri − d. As shown
in Fig. 2, σ2

j:N increases as the variance of σ2
x increases. In

the RMT-SIN method, σ2
x is proportional to σ2

r and d, hence
the larger the σ2

r and d, the greater the σ2
j:N , and hence the

better the privacy.

V. EXPERIMENTAL RESULTS

The effectiveness of the proposed method is evaluated
through experiments on a generic data set that consists
of 4666 face images from several well-known databases:
FERET, PIE, AR, Aging, and BioID. The detailed configu-
ration of the data set can be found in [3]. In our experiments,
we randomly select 2388 image samples from 520 subjects
as the training set, while 2278 samples of the rest 500
subjects as the testing set. The evaluation is performed on
an exhaustive basis, where every image is used as a template
once, and the rest of the images as the probe set. All the
experiments are performed 5 times, and the average of the
results are reported. To study the effects of different feature
extractors, we adopt PCA [5] and Kernel Direct Discriminant
Analysis (KDDA) [6] for comparison.

Fig. 3 depicts the obtained Equal Error Rate (EER, the
operating point where FAR and FRR are equal) of RMT-SIN
method as functions of variance of the multiplicative vector
σ2 and translation value d. The dimensionality of the feature
vector is set to N = 100 based on empirical results. It can be
observed from Fig. 3-b and -d that without translation, zero
EER can not be produced in UD scenario, which indicates
weak changeability. This is consistent with our analysis in
Section 3 and the plot in Fig. 1-b, that by using RMT
directly, clear separation of SK and DK distribution can
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Figure 3. Obtained EER of RMT-SIN method: (a) PCA UI, (b) PCA UD, (c) KDDA UI, (d) KDDA UD.

not be accomplished. As shown in Fig. 1-d, with proper
translation, the DK distribution shifts to the right towards
0.5, and clear separation of SK and DK distributions can be
obtained. This is confirmed in Fig. 3-b and -d that zero EER
can be achieved in UD scenario by proper translation. On the
other hand, since the SK distribution in Fig. 1-d also shifts
to the left as the translation value increases, which indicate
deviation from the characteristics of the original features,
the performance in the UI scenario will possibly degrades
as d increases, as shown in Fig. 3-a and -c. Therefore,
the proposed method has a tradeoff between privacy and
performance.

To provide a comparison with the performance of the
original feature extractors, Fig. 4 plots the receiver oper-
ating characteristic (ROC) curve of different methods, as
a function of Genuine Accept Rate (complement of FRR)
and FAR. For the original features, Euclidean distance and
Cosine distance are used as similarity measures. For the
RMT-SIN method, the parameters are set to σ2

r = 0.03 and
d = 2 as a balance point between privacy and accuracy. It
can be seen that the proposed method outperforms that of
the original features in the UI scenario. In the UD scenario,
it produces FAR=0 at all selections of the system threshold
values, which demonstrates strong changeability.

Figure 4. ROC curve: (a) PCA, (b) KDDA .

VI. CONCLUSION

This paper has presented a new approach for cancelable
face recognition using random multiplicative transform in
conjunction with a sorted index number approach. The
changeability and privacy protecting properties of the pro-
posed method is analyzed in detail. Extensive experimenta-
tion demonstrates that the introduced solution outperforms
the original features, and is capable of producing biometric
template with strong changeability. Although we focus on
face based biometric verification in this paper, the analysis is
general for features in continuous domain, and it is expected
that such method can also be applied to other biometrics.
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