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Abstract—We define a new adaptive embedding approach for
data dimension reduction applications. Our technique entails
a local learning of the manifold of the initial data, with
the objective of defining local distance metrics that take into
account the different correlations between the data points. We
choose to illustrate the properties of our work on the isomap
algorithm. We show through multiple simulations that the new
adaptive version of isomap is more robust to noise than the
original non-adaptive one.

I. INTRODUCTION

In recent years, data sizes have drastically increased. As

a result, there has been a great research focus on improv-

ing and defining effective dimension reduction techniques.

These efforts are extremely relevant if not crucial to data

storage, visualisation, and analysis applications. The objec-

tive behind learning and reducing the dimension of data is

to eliminate any redundant information while still preserving

the intrinsic and underlying structure. One may think of this

problem as an attempt to find all the variables that may

be combined into fewer variables without destroying the

interactions between the data points. To formulate this, we

proceed as follows. Given a data point sample of N points

Xi, i = 1, · · · , N , from a d-dimensional smooth manifold

M, where M ⊂ R
n and d < n, in a dimension reduction

problem, we aim at finding {Yi}, the image of {Xi} by a

homeomorphism f
( · ) such that:

f : M ⊂ R
n → R

d (1)

Xi �→ f
(
Xi

)
= Yi, for i = 1, · · · , N.

We may distinguish two classes of dimension reduction

approaches. The first class includes all the classical methods,

or linear methods, such as Principal Component Analysis

(PCA) [1], and Multidimensional Scaling (MDS) [2]. In

contrast, the second class corresponds to non-linear tech-

niques [3], also referred to as manifold learning methods.

There are about four widely known manifold learning tech-

niques; Locally Linear Embedding (LLE) [4], Laplacian

eigenmap [5], Hessian eigenmap [6], and isomap [7]. Man-

ifold learning algorithms always assume the observed cloud

of data points as part of a smooth manifold. Thus, to proceed

with the analysis of this data, we start by constructing a

graph connecting all the data points and preserving the

structure of the manifold. One usually defines an ε-ball

neighbourhood of fixed radius around each data point to

carry out the analysis. All these techniques have shown very

successful results in ideal conditions; nevertheless, there is

very limited work in addressing the effect of noise and the

choice of the neighbourhood size. Very simple experiments

may show how crucial it is to take these considerations

into account. Our goal in this paper is to address the noise

problem, and propose a way to develop a new manifold

learning technique, with a built-in robustness to noise. The

key idea is to replace the arbitrary choice of an approximate

Euclidean distance, and to instead use a locally adaptive

distance. To achieve that, we propose to account for sample

data points’ correlations in defining their neighbourhood.

The remainder of the paper is organised as follows: In

Section II, we discuss the classical isomap algorithm which,

in contrast to our proposed technique, is non-adaptive. In

Section III, we describe our proposed adaptive method. We

evaluate the benefit of an adaptive isomap in Section IV,

using the residual covariance as a performance measure.

II. NON-LINEAR MANIFOLD LEARNING

Many of the existing manifold learning techniques show

successful results on some well chosen data; and they all

share a limiting failure when in presence of more challenging

data sets. The difficulties are often due to the intrinsic topo-

logical and geometric structure of the manifold with quick

variations in their curvature and non-convex boundaries [8].

Additional difficulties result from the properties of the real

data such as the sample distribution and the nature and level

of the prevailing noise. To address existing limitations and

to further improve the embedding results, and extend the

applicability of the current manifold learning techniques, we

propose to account for these overlooked characteristics. The

idea is to progressively adapt to the data at hand in tracing

the local connectivity between the point samples. Some

recent efforts have explored adaptive manifold learning

by specifically focusing on two parameters: the intrinsic

dimensionality of the data, and the size of the neighbour-

hood. Wang et al. propose in [8] a method to adaptively

select the neighbourhood size. They base their technique on

determining the alignment space of local tangents. Costa et
al. on the other hand define an intrinsic dimensionality using
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Table I
NON-ADAPTIVE ISOMAP ALGORITHM.

Step 1: Construct a weighted graph G.

Given a sample of N data points Xi, i = 1, · · · , N ;
Initialise the graph G = {A, X}, such that:

• A is the initial (N × N ) adjacency matrix whose elements
are set to ∞;

• X = [X1, · · · , XN ]T ;
Compute DE , the matrix of Euclidean distances between each two

points in {Xi}N
i=1.

Choose ε, the neighbourhood radius.
for i, j ∈ {1, · · · , N} do

if DE(i, j) < ε do
A(i, j) = DE(i, j);

else
A(i, j) = ∞;

end if
end for

Step 2: Compute geodesic distances on G.

Let DG be the matrix of geodesic distances between each two

points in {Xi}N
i=1.

do DG = A; (initialisation)
for i, j ∈ {1, · · · , N}; k = 1; do

while DG(i, j) �= DG(i, k) + DG(k, j) do
for k ∈ {1, · · · , N} do
DG(i, j) = min

“
DG(i, j), DG(i, k) + DG(k, j)

”
;

end for
end while

end for
Step 3: Apply MDS on DG.

k-nearest neighbours graphs [9]. In [10], Levina et al. adopt

a local estimate for the intrinsic dimension at each point.

Our present work also focuses on an adaptive embedding

of the manifold; we proceed differently and point out an

additional characteristic that appears to be as critical as the

choice of the embedding dimension or the neighbourhood

size. We indeed show in what follows, that the choice of a

Euclidean distance is sub-optimal in determining the local

connectivity between data points, and therefore introduce a

new adaptive distance locally defined for each point.

Our effort builds on existing manifold embedding tech-

niques. We thus start by recalling the preliminary steps of

a non-linear manifold learning algorithm. We choose to use

the isomap algorithm to illustrate our ideas. This choice is

due to the isomap success in numerous embedding prob-

lems and its well established properties [7]. The principle

and motivations of this work are, nevertheless, extendable

to other embedding algorithms. To achieve the dimension

reduction, isomap defines a mapping that aims to preserve

the geodesic distances on the initial manifold. We may

describe isomap as merely an improved version of MDS

embedding where the inter-point distance is a geodesic, i.e.,

restricted to lie on the initial manifold of the data. We detail

the different steps of the isomap embedding algorithm in

Table I. To practically approximate the intrinsic geodesic

(a) (b)

(c) (d)

Figure 1. Failure of isomap in a noisy setting.

Figure 2. On the left, the structure of the set resulting of a Euclidean
neighbourhood is contoured in blue. On the right, a more detailed structure
of the same data set when using a Mahalanobis distance.

distance on a manifold, we need to locally connect each

point to its k nearest neighbours, or equivalently to the points

within the ε-neighbourhood. By so doing, we result in a

graph that approximates the real manifold. In Figure 1 (a)

we illustrate the approximating graph of a Swiss roll and

the corresponding embedding in Figure 1 (b). We show

in Figure 1 (c) how severely a connectivity graph may be

affected in the presence of noise. This consequently yields

an inaccurate embedding of a given manifold as shown in

Figure 1 (d).

III. PROPOSED ADAPTIVE ISOMAP

The graphs illustrated in Figure 1 (b) and (d) are the result

of considering a Euclidean neighbourhood. In spite of the

isomap good embedding results, it remains very unstable

and sensitive to noise, as well as to the choice of the
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Table II
DESCRIPTION OF THE LEARNING STEP (NEW ADAPTIVE DISTANCE)

Step 0: Compute DM , the new distance on M.

Choose ε1, the neighbourhood radius for manifold learning; and ε2,
the neighbourhood radius for the construction of G.
for i ∈ {1, · · · , N} do

Yi = XT
i ; (initialization)

for j = 1, · · · , N do
while DE(i, j) < ε1 do

Yi = [Yi; X
T
j ];

end while
end forP

i = cov(YT
i ),

cov(·) being the covariance matrix;
end for
for i ∈ {1, · · · , N} do

for j ∈ {1, · · · , N} do
DM (i, j) = (Xj − Xi)

T
P−1

i (Xj − Xi);
end for

end for
do ε = ε2; DE = DM ;
go to Step 1. (See Table I)

parameter ε and the distance function used prior to applying

MDS. Changing the distance from Euclidean to geodesic

thus appears to be insufficient to completely preserve the

intrinsic geometric structure of the initial manifold M. We

herein maintain that the choice of the distance is crucial in

constructing good connectivity graphs. Our objective is to

define a more appropriate distance that alleviates the effect

of noise and ensures accurate graphical approximations.

In what follows we provide the intuitive rationale for the

choice of a new adaptive distance. We subsequently present a

mathematical formulation of new solutions to the embedding

problem to result in an improved technique described in

Table II. We thus propose to account for the statistical

properties of the observed data. Specifically, our technique

consists in considering the correlation between each point

and the rest of the observed data points, and subsequently

exploit this information to connect it to its neighbours.

This idea is exactly equivalent to using a Mahalanobis
distance [11]. To better understand the intuition behind

our choice, we illustrate the result of constructing a graph

connectivity for the sample points in Figure 2. We note that

using a Euclidean distance to determine the neighbours of

each data point causes a miss of some details in the structure

of the data set. As a result we define a new distance matrix

DM to replace DE in the algorithm described in Table I.

Our objective is to define, each time, a distance that is fully

dependent on the sample points {Xi}N
i=1; hence, we re-scale

the data coordinates based on their distributions on M as

well as their correlations. Since this technique relies on a

learning procedure and directly uses isomap to build on, we

refer to it as an adaptive isomap algorithm. We hence use

the algorithm of Table I with a learning step, i.e., Step 0, as

described in Table II.

Figure 3. Adaptive embedding of the noisy swiss roll in Figure 1.

IV. PERFORMANCE COMPARISON

We next treat a slightly more challenging case consti-

tuted of two adjacent hemispheres and two parallel sheets.

Figure 4 shows the results obtained for the hemispheres.

We note that the result of the non-adaptive isomap is not

an embedding as multiple points are mapped to the same

point. The mapping does not preserve the true structure

of the initial manifold. This is due to the connectivity

resulting from using a Euclidean neighborhood. Indeed,

the two hemispheres end up connected through at least 2

points. We avoid this connection by using a Mahalanobis

distance. Figure 4 (c) shows the final mapping resulting from

using the proposed adaptive isomap. We only visualise one

hemisphere at a time. This separation is the only way of

having a true embedding of the data in two dimensions.

In this section, we qualitatively and quantitatively compare

the performances of the two versions (adaptive and non-

adaptive) of isomap embeddings. To that end, we choose the

residual variance ρ between the distance matrix for the initial

data {Xi} and the distance matrix for the final (embedded)

data {Yi} to be our performance indicator. We subsequently

simulate different classical examples of manifolds to embed

in a lower dimensional space. The choice of our examples is

such that one may visually inspect and verify the properties

as well as the intuition behind each technique. We saw that

in the presence of noise, the performance of non-adaptive

isomap drastically deteriorates and it only makes sense to

evaluate performance changes when we analyse the same

noisy data sets using the adaptive isomap. We consider

the noisy Swiss roll example for which we determine an

embedding as shown in Figure 3. In Figure 5, we experiment

the embedding of two parallel sheets. For ε = 10, we see in

Figure 5 (c) that non-adaptive isomap fails again to define

an embedding of the two sheets. The reason is again the

(a) (b) (c)

Figure 4. Embedding two adjacent hemispheres: (a) Hemispheres, (b) the
result of a non-adaptive isomap mapping, (c) the result of the proposed
adaptive isomap.
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(a)
(b) (c)

(d) (e)

Figure 5. Embedding of two parallel sheets. (a) The initial data. (b)
Adaptive isomap with ε = 10 and ε1 = 55. Only 50% of the initial points
are represented here. (c) Non-adaptive isomap with ε = 10. 100% of the
initial points are represented and the two sheets are overlapped. Adaptive
isomap (d) and non-adaptive isomap (e) with ε = 15. 100% of the initial
points are represented.

connection that occurs when using a Euclidean distance

for a graph construction. The result of the adaptive isomap

(Figure 5 (b)) is the disconnection of the two sheets. As they

should, they remain two distinct structures and are hence

separately embedded. The result of embedding one sheet

is shown in Figure 5 (b). Note that it is exactly the sheet

itself, but now in 2-dimensions instead of 3-dimensions.

For a different value of the neighborhood size ε > 10, we

find the results in (d) and (e) for the adaptive and non-

adaptive isomaps, respectively. We notice the sensitivity of

the mapping results to the neighborhood size; we also see

that the separation between the two sheets did not happen

in both cases; however, in the adaptive case, the two sheets

are clearly spread on a plane, while we lose one sheet in

the non-adaptive case, as all the points collapse into one

line. To further evaluate the effect of noise on our proposed

embedding technique, we increase the amount of Gaussian

noise to vary between 0% and 8% of the orthogonal distance

between the two parallel sheets, the normal distance between

two consecutive levels of the swiss roll, and the orthogonal

distance between the poles of the two adjacent hemispheres.

By way of Monte Carlo simulations on the data in hand,

we obtain the results shown in Figure 6. We establish that

the adaptive isomap technique consistently outperforms the

non-adaptive isomap technique.

V. CONCLUSION

We proposed a new adaptive embedding algorithm that

first learns from the correlations between the neighbouring

points. We showed that combining an adaptive distance

with an existing embedding algorithm leads to embedding

results with a higher robustness to noise. We illustrated this

technique on the isomap algorithm, while it is conceptually

compatible with any manifold learning technique that relies

on a connectivity graph.

Figure 6. Monte Carlo simulation of the residual variance ρ versus adaptive
and non-adaptive isomap dimensionality .
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