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Abstract

We present a low resolution face recognition tech-

nique based on a Convolutional Neural Network ap-

proach. The network is trained to reconstruct a refer-

ence per subject image. In classical feature–based ap-

proaches, a first stage of features extraction is followed

by a classification to perform the recognition. In classi-

cal Convolutional Neural Network approaches, features

extraction stages are stacked (interlaced with pooling

layers) with classical neural layers on top to form the

complete architecture of the network. This paper ad-

dresses two questions : 1. Does a pretraining of the

filters in an unsupervised manner improve the recogni-

tion rate compared to the one with filters learned in a

purely supervised scheme ? 2. Is there an advantage of

pretraining more than one feature extraction stage ? We

show particularly that a refinement of the filters during

the supervised training improves the results.

1. Introduction

Face recognition is a topic which has been of increas-

ing interest during the last two decades due to a vast

number of possible applications: biometrics, video–

surveillance, advanced HMI or image/video indexation.

The main challenges in face recognition are illumina-

tion changes, head poses, artefacts (like glasses) or fa-

cial expressions.

1.1 Classical approaches of the task

Several approaches have been proposed [3], they can

mainly be divided into two parts :

• the local approaches, which extract features and

combine them into a global model to do a classifi-

cation.

• the global approaches which realize often a kind

of linear projection of the high–dimensional space

(i.e. the face images) onto a low–dimensional

space.

The local approaches first extract some features (like

eyes, nose and mouth) by the use of special feature ex-

tractors. The recognition task is then performed using

some measures (like the distance between the eyes) on

these features.

The most popular local technique is the Elastic

Graph Matching (EGM) where a set of interest points

is extracted from the face, and then a graph is created.

It has been widely used in the literature [2], [17], [20].

Most of the time, some Gabor filters are applied on the

neighborhood of these points to take into account ap-

pearance information of the face.

The main drawback of the local approaches is that

the extractors have to be chosen by hand and can be

sub–optimal. Moreover, it is difficult to deal with dif-

ferent scales and poses.

The global approaches perform a statistical projec-

tion of the images onto a face space. The most pop-

ular technique called Eigenfaces is based on a Princi-

pal Components Analysis. First introduced by Turk and

Pentland [19], it has been intensely studied in the face

recognition community [11], [6], [18]. Another popu-

lar technique is the FisherFaces method [12], [9], [7]

based on a Linear Discriminant Analysis (LDA), which

divides the faces into classes according to the Fisher cri-

terion.

The main drawback of the global approaches is their

sensitivity to the illumination changes. When the illu-

mination of a face changes, the appearance of it under-

goes a non–linear transformation, and due to the linear

projection of these global approaches, the classification

can fail.

Extensions of these linear approches have been pro-

posed like kernel–PCA [15], or kernel–LDA [8] for face

recognition. The drawback of these extensions is that

there is no invariance unless this one is built into the

kernel, and once again by hand. This is also the draw-

back of other machine learning technics like Support

Vector Machine.
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2. Our Method

Our method relies on a special type of Convolutional

Neural Network. Acting like a diabolo network [16]

where the output vector is the same vector as the input

with a less dimensional intermediate layer, our Face–

Reconstruction Network takes in input some faces for

each subject and tries to reconstruct a reference face

that has been chosen beforehand. Here, the inputs of

the network are images of size 56× 46 which is a quite

low resolution compared to most of other face recogni-

tion algorithms. Inspired by the work of Duffner and

Garcia [5], the network learns automatically the feature

extractors, and combines them to produce a more global

model. The classification is then made by some classi-

cal feed–forward layers.

The principle problem of such an architecture is that

the whole network is trained traditionnally with gradi-

ent descent, including the first layers. The saliency of

the filters learned with backpropagation then depends

essentially on the connections between layers. More-

over, the number of sufficient filters per layer is difficult

to evaluate a priori.

One way to tackle these problems is to pretrain the

first layers in an unsupervised manner. In order to have

salient face features, we use a sparse coding algorithm

which learns an overcomplete basis of filters. These fil-

ters are then used to initialize the first layers of our net-

work.

The paper is organized as follow : the filter banks

learning is described in section 3. The architecure is

detailled in section 4. The training procedure and the

results are presented in sections 5 and 6. Finally, we

present our conclusions and further work in section 7.

3. Learning the sparse filters banks

The aim of the unsupervised sparse coding algorithm

is to find a representation Z ∈ ℜm for a given signal

Y ∈ ℜn by linear combination of an overcomplete set

of basis vectors, which are the columns of a matrix B ∈
ℜn×m with m > n [13]. In optimal sparse coding, the

problem is formulated as :

min ‖Z‖
0

s.t. Y = BZ

where the ‘l0–norm’ is defined as the number of non–

zero elements in a given vector. We can fortunately

make a convex relaxation by turning the l0–norm into

an l1–norm [4]. The problem can then be written as :

L(Y, Z; B) =
1

2
‖Y − BZ‖

2

2
+ λ‖Z‖

1

In this work, we used the PSD algorithm (for Pre-

dictive Sparse Decomposition proposed in [14]) slightly

modified to fit our data. It is composed of an encoder

which produces a sparse code Z from an input Y , and

a decoder which reconstructs the input from the sparse

code. The global loss to minimize is defined as :

L(Y ; G, W, D) = ‖Y − BZ‖
2

2
+ λ‖Z‖

1

+ α‖Z − F (Y, Pf )‖
2

2

where the first term represents the error reconstruction,

the third term denotes the error of the encoder predic-

tion, and the l1–norm ensures the sparsity of the codeZ .

F (Y ; Pf ) defines the output of the encoder, where Pf

denotes the parameters that are learned by the encoder,

and specially the filters matrix W ∈ ℜm×n.

Learning proceeds in an iterative way, alternating the

two steps : (1) minimizeLwith respect toZ keepingPf

and B constant, and (2) update Pf and B by stochastic

gradient descent, using the coefficients of Z .

To proceed the learning of the sparse filters bank, we

extracted 20000 patches of size 7 × 7 with sufficient

standard deviation (to avoid too uniform patch) from the

ORL face database [1]. The number m of filters (rows

of W ) has been set to 100, which is more than twice the

dimension of the patches, so as to ensure the sparsity of

the produced codes.

After training, filters are localized oriented edge de-

tectors, see Fig.1.

A second sparse feature extraction stage is then pro-

cessed, where the training patches are the outputs of

the first feature extraction stage. 150 filters of size

6 × 6 have been learned from a training set composed

of 40000 patches.

4. Architecture

The Face–Reconstruction Network (see Fig.2) takes

as input an image of size 56 × 46 (i.e. the size of the

retina of the network) and passes it through a succession

of convolution Ci, subsampling Si and fully connected

Fi layers. The output of the Network is an image, with

the same size than the input, which is reconstructed by

the last layer F7. Each pixel of the output is one neuron,

so there are 56 × 46 = 2576 neurons on the last layer.

Due to our aim to pretrain some layers with a sparse

coding technic, our network is considerably larger than

classical ones (like the LeNet Network[10]):

• C1. Feature maps : 100; Kernel size: 7×7; (Maps)

Size: 50 × 40. Fully connected to the input.

• S2. Feature maps: 100; Kernel size: 2 × 2; Size:
25 × 20.
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Figure 1. The 100 learned filters of size 7× 7.

• C3. Feature maps: 150; Kernel size: 6 × 6; Size:
20 × 15. Connection rate = 0.5.

• S4. Feature maps: 150; Kernel size: 4 × 3; Size:
5 × 5.

• C5. Feature maps: 200; Kernel size: 5 × 5; Size:
1 × 1. Fully connected to S4.

• F6. Neurons: 100; Fully connected to C5.

• F7. Neurons: 2576; Fully connected to F6.

All the neurons use a sigmoid activation function.

Note that when testing the network, this is not the state

of the last layer which is taken into account, but the

compact code represented by the state of the penulti-

mate layer (that is to say 100 values).

5. Training the Network

Training the network consists on finding the optimal

parameters of the network for a loss function. Here, we

want to minimize the classical regression cost function

E = 1

2
‖op − tp‖

2
where op and tp are the output

values and the target values respectively for the pattern

p.

The ORL database [1] is used to train the network,

it contains 10 images for each of 40 subjects, with

variations in lighting, facial expressions, accessories

and head positions. The images have been resized to

56 × 46, and their pixel values normalized between −1
and 1.

The database is divided into two disjoint parts, the

first one for the training, and the second one for the

tests. For each subject in the train set, a reference image

is chosen to be the target of the subject that the network

has to reconstruct. In the 9 per subject remaining im-

ages, one image is chosen randomly to form the valida-

tion set. During the training phase, a cross–validation is

performed with this last set to avoid overfitting the data.

6. Results

In all the experiments, the database is divided ran-

domly into two disjoint parts, the first one composed of

35 subjects (350 images) is used to train the network,

and the second one composed of 5 subjects (50 images)

to test. The test protocol consists in 4 steps.(1) For a test

image Is of a subject s, the projection PIs
(the vector

of dimension 100 extracted from layer F6) is computed.

(2) For each subject in the database, a model is created.

It is defined as the mean vector of the projections of all

the subject images (except the image Is). (3) Distances

of PIs
to all the models are then processed and (4) the

rank of the recognition for Is is computed. In this study,

we choose the l2 distance for all the experiments.

All the trainings and tests are processed 20 times

with different (random) separations of the database, and

the mean result is computed.

We conducted 6 different experiments to test the use-

fullness of the sparse pretraining, differing in the num-

ber of pretrained layers. We denote afterwards RR the

experiment where the two feature extraction layers are

classicaly initialized randomly. U denotes the exper-

iment where the parameters of the first convolutional

layer are initialized with the sparse filters that have been

learned previously in an unsupervised manner. UU de-

notes the experiment where the first two convolutional

layers are initialized with the sparse filters that have

been learned during the first and second stages respec-

tively. Each of these experiments is processed twice,

depending on if we allow or not a refinement of the fil-

ters by gradient descent during final supervised training.

The results of these experiments are presented in the ta-

ble 1.

Table 1. Results. R: randomly initialized layer, U:

layer pretrained in an unsupervised manner.

`
`

`
`

`
`

`
`

`
`

`
`

Training

Experiment
RR U UU

Not refined 84% 88.7% 82%
Stand. dev. 4.67 3.10 3.52
Refined 87.5% 90.2% 88.2%

Stand. dev. 3.90 2.54 2.91

From the results in the table 1, we can draw three

conclusions : 1. The most surprising result is the good

recognition rate with the two feature extraction layers
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Figure 2. Architecture of the Network.

initialized at random and kept fixed during the training

phase. We think this is due to the high number of fil-

ters, so we can capture sufficient variability of the input.

Nevertheless, the standard deviation of this experiment

is of course higher than the others. 2. The refinement of

the filters gives always better results than keeping them

fixed. 3. Using a second stage of pretrained filters gives

in our case worst recognition rates than only one.

7. Conclusion and Future Work

We presented a low resolution face recognition

method based on a Convolutional Neural Network. This

network takes a face image in input and projects it onto

a low–dimensional space where the recognition is per-

formed. This paper adresses more particularly the prob-

lem of pretraining the features extraction layers in an

unsupervised sparse manner. We successively show

that, in our case, using a second stage of unsupervised

pretrained filters does not give better results than only

one, using only random filters gives decent recognition

rates, and refining the filters during the final supervised

training gives always better recognition rates. We are

currently conducting experiments to better understand

the surprising good results with the pure random filters,

and eventually apply the best method to infrared face

images.
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