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{jimenezv,mollined, sanchez}@uji.es

Abstract

This paper analyzes a generalization of a new met-
ric to evaluate the classification performance in imbal-
anced domains, combining some estimate of the overall
accuracy with a plain index about how dominant the
class with the highest individual accuracy is. A the-
oretical analysis shows the merits of this metric when
compared to other well-known measures.

1. Introduction

Most of learning methods assume that the classes of
the problem share similar prior probabilities. However,
in many real-world tasks the ratios of prior probabili-
ties between classes are significantly skewed. This is
known as the imbalance problem [10]. A two-class
data set is said to be imbalanced when one of the
classes is heavily under-represented as regards the other
class [6]. Because of examples of the minority and
majority classes usually represent the presence and ab-
sence of rare cases, respectively, they are also known as
positive and negative examples.

As claimed by many authors [2, 3, 8], the use of plain
accuracy (error) rates to evaluate the classification per-
formance in imbalanced domains might produce mis-
leading conclusions, since they do not take misclassi-
fication costs into account, are strongly biased to favor
the majority class, and are sensitive to class skews.

Most of alternative metrics are formulated as com-
binations of accuracy (error) rates measured separately
on each class, to alleviate biased results. Nevertheless,
none of these show up how dominant the accuracy of
an individual class is over another, nor distinguish the
contribution of each class to the overall performance.
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This paper discusses a generalization of a new met-
ric to estimate the classifier performance on two-class
imbalanced data sets. It quantifies a trade-off between
an index of how balanced both class accuracies are and
some (unbiased) measure of overall accuracy. The first
term is intended to explain the balance degree between
class accuracies, and it favors those cases with higher
accuracy rate on the positive class. Some illustrative ex-
amples and an extensive theoretical study are performed
to better understand the differences between the mea-
sure here proposed and other well-known metrics.

2. Performance evaluation measures
Traditionally, classification accuracy (Acc) and/or

error rates have been the standard metrics used to es-
timate the performance of learning systems. For a two-
class problem, they can be easily derived from a 2 × 2
confusion matrix as that given in Table 1.

Table 1. Confusion matrix.
Predicted positive Predicted negative

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

However, empirical and theoretical evidences show
that these measures are biased with respect to data im-
balance and proportions of correct and incorrect classi-
fications. These shortcomings have motivated a search
for new metrics based on simple indexes, such as the
true positive rate (TPrate) and the true negative rate
(TNrate). The TPrate (TNrate) is the percentage of pos-
itive (negative) examples correctly classified.

One of the most widely-used evaluation methods in
the context of class imbalance is the ROC curve, which
is a tool for visualizing and selecting classifiers based
on their trade-offs between benefits (true positives) and
costs (false positives). A quantitative representation of
a ROC curve is the area under it (AUC) [1]. For just
one run of a classifier, the AUC can be computed as [9]
AUC = (TPrate+ TNrate)/2.
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Kubat et al. [7] use the geometric mean of accura-
cies measured separately on each class, with the aim of
maximizing the accuracies of both classes while keep-
ing them balanced, Gmean =

√
TPrate · TNrate.

Both AUC and Gmean minimize the negative influ-
ence of skewed distributions of classes, but they do not
show up the contribution of each class to the overall per-
formance, nor which is the prevalent class. This means
that different combinations of TPrate and TNrate may
produce the same result for those metrics.

Recently, Ranawana and Palade [8] introduced the
optimized precision, which can be computed as,

OP = Acc−
|TNrate− TPrate|
TNrate+ TPrate

(1)

This represents the difference between the global
accuracy and a second term that computes how bal-
anced both class accuracies are. High OP values re-
quire high global accuracy and well-balanced class ac-
curacies. However, OP can be strongly affected by the
biased influence of the global accuracy.

3. Generalizing a new performance metric

This section provides a generalization of a primary
index reported in [4], named Index of Balanced Accu-
racy (IBA). The main purpose of the generalized IBA
will be to weight a measure suitable to evaluate the per-
formance in imbalanced domains. The weighting factor
will aim at favoring those results with better classifica-
tion rates on the minority class.

The generalized IBA can be formulated as follows:

IBAα(M) = (1 + α ·Dom) · M (2)

where (1 + α · Dom) is the weighting factor and M
represents any performance metric.

The Dom term, called dominance, is defined as
Dom = TPrate−TNrate within the range [−1,+1],
and it is here used to estimate the relationship between
the TPrate and TNrate. The closer the dominance is
to 0, the more balanced both individual rates are. If
TPrate > TNrate, then Dom > 0; otherwise,
Dom < 0.

The value of Dom is weighted by α ≥ 0 to reduce
its influence on the result of the particular metric M.
Thus the weighting factor in Eq. 2 is within the range
[1−α, 1+α]. Note that if α = 0 or TPrate = TNrate,
the IBAα turns into the measure M. In practice, one
should select a value of α depending on the metric used.

3.1. Formulating IBAα with Gmean

As a representative example, this paper will use
Gmean because this is a suitable, well-known perfor-

mance measure for class imbalanced problems. Hence
IBAα can now be rewritten in terms of Gmean as:

IBAα(Gmean) = (1 + α ·Dom) ·Gmean (3)

Since α will depend on the metric M, the following
study is devoted to empirically set an appropriate value
of α for the particular case of IBAα(Gmean). Also, this
example will allow to clear up the behavior differences
of IBAα with respect to other metrics.

Let f(θ) be a classifier that depends on a set of pa-
rameters θ. Suppose that θ should be optimized so that
f(θ) can discriminate between the two classes of a par-
ticular imbalanced problem (with a ratio 1:10). Let
T and V be the training and validation sets, respec-
tively. During learning, seven possible configurations
(θ1, θ2, . . . , θ7) have been obtained from T , and then
the corresponding classifiers f(θi) have been run over
V . Table 2 reports the results of some measures used to
evaluate each classifier f(θi). The last step in learning
should be to pick up the best configuration θ∗ according
to the performance measure adopted.

Table 2. A synthetic example.
TPrate TNrate Acc Gmean AUC OP IBA0.05 IBA0.1 IBA0.2

θ1 0.550 0.950 0.914 0.723 0.750 0.647 0.708 0.694 0.665
θ2 0.650 0.850 0.832 0.743 0.750 0.698 0.736 0.728 0.714
θ3 0.700 0.800 0.791 0.748 0.750 0.724 0.745 0.741 0.733
θ4 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750
θ5 0.800 0.700 0.709 0.748 0.750 0.642 0.752 0.756 0.763
θ6 0.850 0.650 0.668 0.743 0.750 0.535 0.751 0.758 0.773
θ7 0.950 0.550 0.586 0.723 0.750 0.320 0.737 0.752 0.781

Note that configurations θ1 and θ7 correspond to
cases with a clearly biased behavior, whereas θ4 pro-
duces a perfect balance between TPrate and TNrate.
The rest of configurations θ2, θ3, θ5 and θ6 produce less
differences between TPrate and TNrate.

For this example, AUC is of no value at all since
all configurations give the same value. Accuracy would
select the biased θ1 because it strongly depends on the
majority class rate. Both Gmean and OP suggest the
most balanced configurations (θ3, θ4, θ5), ignoring the
fact that the minority class is usually the most impor-
tant. While Gmean does not distinguish between θ3 and
θ5, OP would prefer θ3 rather than θ5 because its com-
putation is affected by the accuracy. These drawbacks
can be overcome when using the IBAα measure by ap-
propriately tuning the parameter α. One can see that
IBA0.05 and IBA0.1 select θ5 or θ6, which correspond
to the moderate cases with the highest TPrate.

Results of IBA0.2 show a biased tendency of IBAα

towards TPrate for high and moderate values of α. This
effect is due to the strong influence of Dom on IBAα,
what justifies the need of α to weight its importance.
This study suggests that the use of small values of α
allow to correct this effect and thus, we propose α =
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0.05 for the calculation of IBAα(Gmean).

4. The theoretical analysis of IBAα

Two theoretical studies are performed to explore
the possible advantages of IBAα (with α = 0.05 and
M = Gmean) over other metrics. One computes Pear-
son correlation coefficients in order to devise how IBAα

is correlated with other metrics that might be deemed as
good or bad choices to tackle the imbalance. The sec-
ond study analyzes how sensitive the metrics are under
different types of changes to the confusion matrix.

4.1. Correlation analysis

Five collections of classifier output tuples based on
different imbalance ratios were generated as in [5]. A
classifier output tuple consists of a list of n numeric
values between 0 and 1 which represent, for n hypo-
thetical samples, the probabilities of belonging to the
positive class (classifier outputs). All tuples were gen-
erated from a main ranked list where the i-th compo-
nent is the “true” probability pi of belonging the in-
stance i to the positive class. However, in contrast to [5],
this list was defined considering a particular imbalance
level in the assignment of true probabilities. For ex-
ample, for an imbalance ratio of 1:3, the first 75% of
instances in the list were linked to probabilities within
the range [0, 0.5] (negative class), while the rest were
associated to probabilities in (0.5, 1] (positive class).
Given an imbalance true tuple as the one just described,
a perturbed tuple was generated by randomly fluctuat-
ing the true probabilities p of negative samples within
the range [max(0, p − ϵn),min(1, p + ϵn)], and the
true probabilities p of positive samples within the range
[max(0, p − ϵp),min(1, p + ϵp)]. The use of two dis-
tortion terms, ϵn for the negative class and ϵp for the
positive class, allows to simulate different scenarios of
biased learning: for ϵn > ϵp, a greater proportion of
negative samples should be “misclassified”, while for
ϵn < ϵp the positive class should be the most affected.

Table 3 is an example of a true tuple (T) with 12
samples and an imbalance ratio of 1 : 3, along with
two derived perturbed tuples, P1 and P2, obtained from
(ϵn = 0.3, ϵp = 0) and (ϵn = 0, ϵp = 0.3), respec-
tively. Items typed in bold face represent misclassified
samples. P1 simulates the outputs of a classifier focused
on the positive class, while P2 contains the results of a
biased classifier that favors the negative class.

The five collections of classifier output tuples used in
the analysis were drawn from five different imbalance
ratios expressed in terms of the percentage of positive
samples: 5%, 10%, 15%, 20% and 25%. Each collec-
tion was composed of 130 tuples distributed in 10 per

each of the 13 combinations of distortion terms ranging
from (ϵn = 0.6, ϵp = 0) to (ϵn = 0, ϵp = 0.6) with
steps (−0.05, 0.05) and satisfying ϵn + ϵp = 0.6.

Table 3. An example of a true and two per-
turbed tuples for an imbalance ratio 1:3.
T 0.06 0.11 0.17 0.22 0.28 0.33 0.39 0.44 0.5 0.67 0.83 1.0

– – – – – – – – – + + +
P1 0.0 0.0 0.23 0.52 0.26 0.49 0.55 0.24 0.61 0.67 0.83 1.0

– – – + – – + – + + + +
P2 0.06 0.11 0.17 0.22 0.28 0.33 0.39 0.44 0.5 0.45 0.57 1.0

– – – – – – – – – – + +

An independent correlation matrix between all pairs
of metrics was built for each collection. Correlation co-
efficients were plotted in Figure 1 to make easier the
understanding of results. The axes X and Y correspond
to the correlation values in the range [−1,+1] and the
percentage of positive samples, respectively.

Several comments related with IBA0.05(Gmean) can
be drawn from Figure 1:

• IBAα shows a very low (negative) correlation with Acc,
which has been proven not to be appropriate for imbal-
anced domains. Besides, the correlation coefficient of
IBAα in terms of absolute value is slightly lower than
those of AUC and Gmean, which are even positive.

• IBAα has a very high (positive) correlation with AUC
and Gmean, suggesting that IBAα can be suitable for
imbalanced distributions.

• IBAα appears to be clearly the most correlated measure
with TPrate, which represents the classifier performance
on the most important class (the minority one).

• IBAα presents a very low (negative) correlation with
TNrate. Although AUC and Gmean show very low cor-
relations with TNrate, their coefficients are positive.

Despite OP was defined in the context of class im-
balance, it is strongly correlated with Acc, TPrate and
TNrate, due to the great influence of accuracy on it.

4.2. Invariance properties

This second analysis intends to assess invariance
properties of various metrics with respect to four basic
changes to the confusion matrix of Table 1. A measure
is said to be invariant to a certain change if it cannot
distinguish a new configuration from the previous one.
In general, a robust performance measure should detect
every matrix transformation. Four invariance proper-
ties [9] are here used to demonstrate that IBAα is more
sensitive to changes than the remaining metrics.

p1 invariance under the exchange of TP with TN and FN
with FP .

p2 invariance under a change in TN , while all other matrix
entries remain the same.
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Figure 1. Scatterplot of Pearson correlation coefficients.

p3 invariance under a change of FP , while the other matrix
entries do not change.

p4 invariance under scaling: TP → k1TP , TN → k2TN ,
FP → k1FP , FN → k2FN , where k1, k2 > 0.

Table 4 reports the invariance properties of the mea-
sures considered in this paper. ’+’ and ’–’ indicate in-
variance and non-invariance, respectively. As can be
observed, IBAα is the only measure capable of detect-
ing all types of changes, what suggests that it is more
sensitive to changes than the other metrics.

Table 4. Invariance properties.

Acc TPrate TNrate Gmean AUC∗ OP IBAα

p1 + – – + + – –
p2 – + – – – – –
p3 – + – – – – –
p4 – – – – – – –

* Valid for AUC when only one classifier run is available.

5. Conclusions
We have analyzed a generalization of a new met-

ric, IBAα, to evaluate the classifier performance in two-
class imbalanced problems. It is defined as a trade-off
between a global performance measure and a simple
signed index to reflect how balanced the individual ac-
curacies are. High values of IBAα are achieved when
the accuracies of both classes are high and significantly
balanced. Unlike most metrics, IBAα does not take care
of the overall accuracy only, but also intends to favor
classifiers with better results on the positive class.

Two theoretical studies have shown the benefits of
the new metric when compared to other measures. In
this sense, it has been proven that IBAα is strongly cor-
related with AUC and Gmean (generally accepted as
good measures for imbalance problems). However, un-
like AUC and Gmean, IBAα is more correlated with

TPrate and less (and negatively) correlated with accu-
racy. Also, a study on invariance properties has shown
that IBAα is more sensitive to changes to the confusion
matrix than the other measures here considered.
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