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ABSTRACT 
In conversational agents with multiparty communication 
functionality, a system needs to be able to identify the addressee 
for the current floor and respond to the user when the utterance is 
addressed to the agent. This study proposes some addressee 
identification models based on speech and gaze information, and 
tests whether the models can be applied to different proxemics. 
We build an addressee identification mechanism by implementing 
the models and incorporate it into a fully autonomous multiparty 
conversational agent. The system identifies the addressee from 
online multimodal data and uses this information in language 
understanding and dialogue management. Finally, an evaluation 
experiment shows that the proposed addressee identification 
mechanism works well in a real-time system, with an F-measure 
for addressee estimation of 0.8 for agent-addressed utterances. We 
also found that our system more successfully avoided disturbing 
the conversation by mistakenly taking a turn when the agent is not 
addressed. 

Categories and Subject Descriptors 
H.1.2 [User/Machine Systems]: Human factors; H.5.2 [User 
Interfaces]: Evaluation/methodology; I.2.1 [Applications and 
Expert Systems]: Games, Natural language interfaces 

General Terms 
Design, Experimentation, Human Factors. 

Keywords 
Addressee identification, multiparty conversation systems, 
autonomous virtual agent, evaluation. 

1. INTRODUCTION 
In information kiosk agents that can communicate with a group of 
users, one of the most important functions is to respond to the 
user with proper timing by judging whether an utterance is 
addressed to the agent or to another user. Unless the system 

correctly recognizes addressee-hood, it does not respond to the 
user even when the user asks the agent a question. More seriously, 
if the agent speaks when it should not take a turn, such behaviors 
annoy the users and disturb the communication among the users. 
This paper aims to implement an addressee identification 
mechanism in a fully autonomous conversational agent, and 
investigates whether the proposed mechanism contributes to 
improving the effectiveness of human-agent multiparty 
communication.  

However, addressee identification cannot be easily implemented. 
The system needs to have a speech processing mechanism that 
processes the speech signal and extracts prosodic and/or language 
information, along with motion sensors or computer-vision-based 
systems that track the user’s motions. All of these types of 
multimodal information are fused in determining the addressee, 
but it sometimes happens that these input modules fail to 
recognize part of the user’s speech and motions. In order to build 
an addressee identification mechanism that can effectively work 
in a real-world application, it is necessary to implement the 
mechanism in a practical manner and test whether its performance 
is good enough for practical usage. Moreover, there is a 
possibility that addressee identification models and their 
parameter settings need to be changed depending on the 
proxemics between the agent and the users. To address this issue, 
we will collect human-agent multiparty conversations in different 
proxemics and, based on the data, we will propose a general 
model that is applicable regardless of the distance from the agent. 

In the following sections, first, related work for addressee 
identification will be discussed in section 2. Section 3 describes 
data analysis and proposes addressee identification models. In 
section 4, we implement an addressee identification mechanism 
based on the models, and incorporate the mechanism into a fully 
autonomous conversational agent. In section 5, we conduct an 
evaluation experiment to compare our system with a 
conversational agent with a naïve addressee identification 
mechanism, and show that our system properly communicates 
with novice users who have never used a conversational 
humanoid.  

2. RELATED WORK 
Floor control is a scheme that organizes who is taking the turns, 
and this is also important in human-computer dialogue systems.  
Schrangen [17] used lexical and prosodic information at the end 
of utterances to predict turn changes. Not only speech information, 
but also nonverbal bodily behaviors play an important role in 
coordinating turn-taking. Duncan [10] proposed that nonverbal 
cues, such as gestures and gaze, signal turn-taking. In multiparty 
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conversations, floor control becomes more complex compared to 
dyadic conversations because there are multiple possibilities 
about who takes the next turn. Using a group conversation corpus, 
Chen et al. [8] proposed a model for detecting a floor control shift 
based on verbal and nonverbal information, and showed that 
visual information such as gesture and gaze are useful in detecting 
turn-taking. Addressee identification is closely related to floor 
control because the addressee in the current turn may be the next 
turn holder with high probability. Thus, factors discussed in floor 
control are also useful in addressee identification. For example, 
many studies in addressee identification found that gaze 
information is useful in addressing [22, 18, 3]. Jovanovic et al. 
[13] proposed a model for addressee identification by applying 
Bayesian Network and Naive Bayes classifiers to a corpus 
annotated with gaze information, utterance, and conversational 
context.  

These findings for addressing in multiparty conversations have 
been re-confirmed and/or reconsidered in multiparty 
conversations between human users and a computer (or a robot). 
Lunsford et al. [15] showed videos of multiparty conversations to 
subjects and asked them to judge to whom the utterance was 
addressed. They analyzed the human judgments of addressee-
hood and reported that, in their judgment, gaze and prosodic 
information were useful. Lunsford et al. [16] analyzed triadic 
conversations between two human subjects and a computer 
system that asked them about basic problems in mathematics and 
gave explanations about technical terms of mathematics when 
subjects asked a question. They found that the subjects’ speech 
power increased two to three dB in talking to the computer, and 
suggested that the change of speech power was a means for 
indicating the addressee that the speaker intended. Bakx et al. [4] 
analyzed pairs of users’ behaviors in interacting with an 
information kiosk using speech input and a touch screen. They 
found that, unlike human conversations, the subjects looked at the 
screen the majority of the time, both when talking to the system 
and when talking to the other person. Terken et al. [19] analyzed 
three-party conversations in which two subjects played the role of 
customers and the third person played the role of a clerk at a 
travel agency. Based on their analysis, they discussed what type 
of information would be useful in implementing information 
kiosk conversational agents that can work as clerks and suggested 
that both gaze and speech information would be useful in 
addressee identification.  

However, all these are analytical studies, and they did not propose 
addressee identification methods or models that can be 
implemented into a computer system. Moreover, these studies 
analyzed multiparty conversations collected in different 
experimental settings. For instance, the distance between the 
agent and the subjects, proxemics, and the size of the 
conversational agent were different depending on the study. Thus, 
there is no assurance that suggestions discussed in one study are 
applicable to different situations. Aiming at establishing more 
generic addressee identification models, this study examines 
whether the speech and gaze information discussed in the 
previous studies is useful even if the distance and the size of the 
agent are changed.  

By referring to the empirical analyses shown above, some 
addressee identification models were proposed using machine-
learning techniques. Turnhout et al. [21] proposed a model that 
judges whether an utterance is addressed to the system by 

applying a Naive Bayes classifier to a set of multimodal features: 
gaze, dialogue history, and utterance length information. 
Katzenmaier et al. [14] used gaze and linguistic information to 
identify the addressee in multiparty conversations with two 
human users and a robot. In their study, the gaze information was 
obtained based on automatic face tracking which determined 
whether a participant was looking at a robot or another participant. 
The linguistic information was obtained from an automatic speech 
recognition system. More recently, Vinyals et al. [23] proposed a 
method for addressee identification as well as speaker and overlap 
detection in multiparty conversations by directly reasoning about 
temporally streaming features.   

In one study sharing a goal with this study in terms of building 
multiparty conversational agents, Traum et al. [20] built a system 
in which a user negotiates with two virtual agents. The agents 
were implemented as different agent systems with different 
standpoints, and the user communicates with the agents to 
persuade them. A series of studies by Bohus et al. [5, 7], which 
are closely related to this study, implemented multiparty 
conversation systems with two users interacting with one 
conversational agent. The main goal of their research was floor 
management in multiparty conversational systems, and as a part 
of this functionality, they implemented an addressee identification 
mechanism based on attentional focus information. They also 
implemented a mechanism that produced verbal and nonverbal 
agent’s behaviors based on their turn-taking model [6]. On the 
other hand, this study solely focuses on addressee identification 
itself, and tries to establish a more general model that can be 
applicable to different proxemics, and to implement a more robust 
mechanism that is useful for practical usage where loss of sensing 
data frequently happens. Through implementation and evaluation 
of our addressee identification mechanism, we will show how 
well our model and mechanism work in practical multiparty 
conversational systems.  

3. CORPUS ANALYSIS AND MODELS 
This section analyzes multiparty conversation corpora in different 
proxemics between two users and an agent, and establishes 
addressee identification models based on speech and head-
direction parameters.  

3.1 Corpus Collection 
Employing the Wizard-of-Oz (WOZ) method, we collected 
human-human-agent multiparty conversations in two different 
experimental settings. Pairs of subjects were instructed to interact 
with an animated agent on a screen/display, and to retrieve 
information in order to make a joint decision regarding given 
tasks.  

Experiment 1 (Exp 1): the subjects stood about 1.5 m away from a 
120-inch rear-projection type screen and interacted with a life-
sized female animated character on the screen. The distance 
between the subjects was 20cm. The experimental setting is 
shown in Figure 1(a).  

Experiment 2 (Exp 2): each subject sat on a chair with a 20-inch 
computer display on the table in front of them. A half-body 
female animated character was shown on the display. The 
subjects sit 90cm away from each other with the distance between 
the display and each subject also being 90cm. Thus, two subjects 
and the display formed an equilateral triangle. The experimental 
setting is shown in Figure 1(b). 
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In both experiments, each pair of subjects was instructed to 
complete two decision-making tasks, such as choosing lectures to 
register for together and choosing places to visit in Kyoto. 
Sentences that the agent could speak were pre-defined in a GUI 
menu, and the WOZ operators selected the agent utterances from 
the menu. There was also a text field that allowed them to type 
arbitrary utterances. More detailed description of the experimental 
procedure is given in [11].  

The data for 17 pairs (10 male and 7 female pairs, or 34 subjects) 
collected in Exp 1 were analyzed. In Exp 2, ten pairs of university 
students (five male pairs and five female pairs) participated in the 
experiment and we analyzed the collected data.  

The participants’ interactions with the agent were recorded by two 
video cameras. In addition, a USB webcam (960 x 720 pixels, 30 
fps) was set on the top of the screen to collect video data to be 
processed by FaceAPI [1], a vision-based face-tracking system.  

3.2 Corpus Analysis 
We analyzed the interaction for one experimental session for each 
pair. First, we divided the corpus into utterance units. When more 
than 200 ms of silence was observed, it was automatically 
identified as the end of the current utterance, and the subsequent 
speech was regarded as a new utterance. We also annotated the 
speaker and the addressee for each utterance, and used the 
annotation as the ground truth. The number of utterances 
addressed to the agent was 863 in Exp 1 and 518 in Exp 2, and 
that for utterances addressed to the other subject of the pair 
(hereafter referred to as the “partner”) was 967 in Exp 1 and 533 
in Exp 2.  

3.2.1 Analysis of speech 
We analyzed pitch (F0), intensity, speech rate, and duration of 

each user utterance. These prosodic features were extracted from 
each utterance using a speech analysis tool, Praat, at 0.01 sec 
interval. Since the precise speech rate, the number of phonemes 
per second, cannot be obtained automatically by Praat, we 
approximately calculated it from syllable counts [9].  

The average values for pitch (F0), intensity, speech rate, and 
duration for Exp 1 and 2 are shown in Table 1. The results of 
paired t-test are also shown in the table. In both experimental 
settings, the F0 and the intensity were higher and the speech 
duration was longer when a person was speaking to the agent than 
when speaking to the partner. These results were statistically 
significant except for the F0 in female pairs in Exp 1, where a 
statistical trend was found. The speech rate was slower when the 
person was speaking to the agent, but the results were not clear 
for male pairs in Exp 2. 

In order to examine whether these findings were consistent 
regardless of the proxemics (experimental settings) and gender, a 
two-way ANOVA was used to test two between-subject factors: 
proxemics (Exp 1 or 2) and gender (male or female). We did not 
find statistically significant results for F0, speech rate, and 
duration. This suggests that proxemics and gender did not affect 
the manner of speaking (i.e., the difference between speaking to 
the agent and speaking to the partner was consistently observed 
through the two experiments with both male and female pairs). 
However, these factors affected the intensity (proxemics: F(1, 50) 
= 11.37, p < 0.01, gender: F(1, 50) = 8.84, p < 0.01). The reason 
for the difference between Exp 1 and Exp 2 was that the 
microphones used in Exp 2 were different from those used in Exp 
1, and the average audio amplitude was different between the 
experiments. The gender difference indicated that the speech 
intensity in male pairs was more clearly distinguished between the 
speech to the agent and that to the partner. Note that the 
interaction between these two factors was not statistically 
significant, indicating that we found consistent results that the 
speech intensity to the agent was greater than that to the partner 
regardless of proxemics and gender.  

These results suggest that speech features are different depending 
on to whom the person talks. When people talk to the agent, they 
speak with a higher tone of voice and also speak more loudly and 
slowly. This tendency of speech is consistent regardless of 
proxemics and gender. Thus, we consider that these prosodic 
features are generic and useful in estimating the addressee.  

 

Table 1. Results of speech analysis 

F0 (Hz) Intensity (dB) Speech Rate (syllable/s) Duration (s)

Male Female Male Female Combined Male Female Combined Male Female Combined

Exp 1

Agent 131.6 241.3 63.8 63.6 63.7 4.59 4.56 4.61 1.99 2.22 2.08

Partner 124.3 233.0 60.2 60.7 60.4 4.91 5.10 4.99 0.96 1.06 1.00

t(df) = 
t-value

P

t(19) = 
4.44
<.01

t(13) =
1.46
<.10

t(19) =
9.38
<.01

t(13) = 
7.84
<.01

t(33) = 
12.04
<.01

t(19) =
-3.00
<.01

t(13) = 
-3.64
<.01

t(33) = 
-4.64
<.01

t(19) =
13.38
<.01

t(13) = 
10.05
<.01

t(33) =
16.53
<.01

Exp 2

Agent 123.3 232.6 56.3 59.6 57.9 4.89 4.90 4.89 2.12 2.29 2.20

Partner 116.8 221.0 50.3 55.9 53.1 4.97 5.23 5.11 0.85 1.19 1.02

t(df) =
t-value

P

t(9) = 
2.26
<.05

t(9) =
4.37
<.01

t(9) =
8.09
<.01

t(9) =
9.84
<.01

t(19) = 
10.27
<.01

t(8) =
-0.19
<.50

t(9) = 
-3.29
<.01

t(18) =
-1.11
<.20

t(9) =
6.54
<.01

t(9) =
9.57
<.01

t(19) =
10.65
<.01

Agent
Agent

 
(a) Experiment 1                       (b) Experiment 2 

Figure 1. Proxemics between subjects and the agent 
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3.2.2 Analysis of head direction 
The video data collected in the experiments were analyzed using 
face-tracking software, FaceAPI [1], which can measure the head 
position and rotation in x, y, and z coordinates.  

Since it is well known that the speaker frequently looks at the 
addressee during his or her speech, it is assumed that the subjects 
were looking at the agent when speaking to the agent, and looking 
at the partner when speaking to the partner. However, in previous 
work analyzing interaction between two users and an information 
kiosk system [4], it was reported that the subjects looked mainly 
at the computer screen, both when talking to the system and when 
talking to the other person. In our head-direction data for Exp 1, 
the subjects looked at the agent 93.2% of the time while they 
were talking to the agent. On the other hand, the speaker looked at 
his or her partner only 33.5% of the time while they were talking 
to one another. In Exp 2, the subjects looked at the agent 68.6% 
of the time while talking to the agent, and looked at the partner 
40.4% of the time while talking to each other. In both 
experiments, when the subjects were talking to the partner, they 
looked at the agent the majority of the time. These results are 
consistent with the previous study [4]. Therefore, it is difficult to 
estimate the addressee solely based on head-direction 
information, suggesting that combining that information with 
speech information is necessary to get better estimation of 
addressee-hood.  

3.3 Addressee Identification Models 
Analyses in previous sections revealed that speech and head-
direction information is useful in identifying the addressee 
regardless of gender and proxemics between the subjects and the 
agent. In this section, we will create addressee identification 
models for different user-agent proxemics, and show that the 
accuracy of these models is good enough for further 
implementation.  

Based on the data analysis described in section 3.2, we 
determined six speech features, including average F0, intensity, 
speech rate, and duration of the utterance, and seven head-
direction features for each participant (14 features in all), 
consisting of time proportion of looking at the 
partner/agent/elsewhere and head-direction transition, such as 
agent to partner, agent to elsewhere, and partner to agent. A list of 
parameters is shown in the Appendix.  

We employed an SVM classifier with a linear kernel and C 
parameter set to 1.0. We used the SMO implementation in Weka. 
Table 2 shows the results of 10-fold cross-validation for 
estimating the addressee; agent or partner. We created three 
models for each proxemics: Speech, Head_direction, and 
Speech+Head_direction. A Speech model was trained only using 
speech features, a Head_direction model was trained only using 
head-direction features, and a Speech+Head_direction model was 
trained using a full set of features. Since the utterances whose 
face tracking data were missing were eliminated in the 
Head_direction model, the number of cases used in models 
exploiting head-direction information is less than in the Speech 
model.  

Note that in both experimental settings, the 
Speech+Head_direction model always performed better than the 
other two models. The accuracy of the Speech+Head_direction 
model for Exp 1 was 80.3%, and the F-measure values were 0.80 
and 0.81 for the agent and the partner, respectively. In Exp 2, the 
accuracy of the Speech+Head_direction model was 85.1%, and 

the F-measure values were 0.86 and 0.85 for the agent and the 
partner, respectively. We also created general models by 
combining the data in Exp 1 and 2. Among the general models, 
the Speech+Head_direction model still performs the best; its 
accuracy was 83.4%, and the F-measure values were 0.84 and 
0.83 for the agent and the partner, respectively. Thus, both the 
results for addressee identification shown here and the data 
analysis in section 3.2 suggest that both speech and head-direction 
information contributes to identifying the addressee, and models 
learned from the full set of features performed the best.  

To test the compatibility between the models for Exp 1 and 2, we 
conducted cross evaluation by applying the 
Speech+Head_direction model in Exp 1 to Exp 2 data and vice 
versa. The accuracy dropped from 80.3% to 75.8% in applying 
Exp 1 model to Exp 2 data, and it dropped from 85.1% to 76.0% 
in applying Exp 2 model to Exp 1 data. On the other hand, when 
we created a general model using the first half of the Exp 1 and 
Exp 2 data and tested the model using the second half of the data, 
the model worked well with the test data. There was no 
degradation in accuracy (the accuracy remained around 83.0%). 
These results suggest that the speech and head direction features 
exploited in this study are commonly useful in both proxemics, 
but the models are not always compatible with each other. 
Therefore, it would be better to create models that are applicable 
to both proxemics by combining the data from both experiments. 
Note that this does not mean that the models for different 
proxemics are not useful at all. Their accuracy was still over 75% 
in the other experimental settings, and in some cases, they were 
better than the original models that use only speech features or 
head-direction features. Thus, they are still useful as substitute 
models.   

Table 2. Model evaluation using cross-validation 

Speech Head 
direction

Speech +
Head 

direction

Exp1

# of utterances 1,830 1,237 1,237

F-measure
Agent 0.717 0.759 0.799

Partner 0.781 0.656 0.806

Accuracy 75.3% 71.6% 80.3%

Exp2

# of utterances 1071 953 953

F-measure
Agent 0.787 0.805 0.857

Partner 0.823 0.744 0.845

Accuracy 80.7% 77.9% 85.1%

General

# of utterances

F-measure
Agent 0.736 0.769 0.836

Partner 0.789 0.691 0.832

Accuracy 76.5% 73.5% 83.4%
 

Table 3. Evaluation of Speech+Head_direction models using 
test data 

Exp1 model tested 
by Exp2 data

Exp2 model tested 
by Exp1 data

General
model (split) 

F-measure
Agent 0.732 0.795 0.829

Partner 0.779 0.71 0.826

Accuracy 75.8% 76.0% 82.8%
 

38



4. MULTIPARTY CONVERSATIONAL 
AGENT 
We implemented a multiparty conversation system, including an 
addressee identification mechanism based on the model proposed 
in the previous section. The system architecture is shown in 
Figure 2. The details of each component will be described in the 
following subsections.  

4.1 Addressee Identification Module 
This module consists of the following four sub-modules.  

(1) Speaker diarization: In order to identify who is speaking, we 
use a microphone array installed in Microsoft Kinect. If the 
microphone array detects speech sound from the right direction, 
then the system judges that the right user is speaking and vice 
versa.  

(2) Speech information analysis: Speech information analysis 
calculates speech feature values. We use Praat scripts for this 
purpose, and compute the average F0, intensity, and speech rate 
for a given utterance. The parameter values are then sent to the 
addressee identification module. 

(3) Head direction recognition: When this module receives 
outputs from face-tracking software (FaceAPI), it estimates the 
head direction: front, right, left. For this purpose, we created a 
decision tree using a J48 program, which is an implementation of 
the C4.5 algorithm in Weka. The decision tree estimates the head 
direction from the head position and rotation data from the face-
tracking software. The details of head-direction recognition were 
described in our previous study [11]. Once the head direction is 
estimated, the head-direction feature values for addressee 
identification are calculated for a given speech interval.  

(4) Addressee identification: This module receives speech 
parameter values from the speech information analysis component, 
and head-direction parameter values from the head-direction 
recognition component. Then, it applies these data to the 
addressee identification models to identify the addressee.  

However, in real-time processing, input devices do not always 
work perfectly, and part of the speech and/or head-direction data 
cannot be measured. In such cases, some of the parameter values 

are missing. For example, once face-tracking software loses the 
face, when the user moves his or her head rapidly, it stops 
tracking, and it takes some time to grab the face again. During the 
time that the face-tracking data are not being measured, the head-
direction parameters cannot be calculated. For speech parameters, 
pitch (F0) and speech rate sometimes cannot be obtained, but 
speech power is more stable information. To keep the addressee 
identification mechanism working even if some of the parameter 
values are missing, we set up four models and switched the 
models depending on the parameter values obtained for a given 
speech interval. The models and the applicable conditions are 
shown in Table 4. All these models were created by SVM, as 
described in section 3.3 (the Speech+Head_direction model and 
Speech model are identical to the general models shown in Table 
2). When F0 and speech rate cannot be measured, (s1), (s3) (The 
definition of each parameter is shown in Appendix), and (s5) 
parameters cannot be obtained. In such a case, the 
Power+Speech_duration+Head_direction model is applied, using 
parameter values for the speech power ((s2) and (s6)), speech 
duration (s4), and head direction (f1)-(f7). This switching 
mechanism enables stable addressee identification, contributes to 
better performance and improvement in robustness of a multiparty 
conversation system.  

4.2 Understanding Module 
(1) Speech recognition: The speech interval obtained by the 
speech information analysis module is sent to an automatic speech 
recognition (ASR) system. We employ the Google speech 
recognition server as our ASR engine. The speech audio file is 
sent to the server, and the server returns the recognition results in 
JASON (JavaScript Object Notation) format. The system extracts 
keywords from the recognition results. The keywords were 
determined using the following process. First, from the 
conversation corpus collected in section 3.1, we picked up 
utterances addressed to the agent. Then, the transcriptions of these 
utterances were analyzed using a part-of-speech (POS) tagger to 
assign POS tags to each word. From the POS-tagging results, 
noun, verb, adjective, and interjection were determined as 
keywords.  

Once the speech recognition component receives 5-best 
recognition results from the ASR server, it picks up keywords 
from each recognition result by referring to the keyword list 

Speaker diarization

Speech information 
analysis

Head-direction recognition

Addressee 
identification

Speech recognition Language understanding

Understanding module

Conversation manager

Conversation state manager

Conversation controller

Generation module

Addressee identification moduleSpeech 
input

Video 
input

Animation Synthesized 
speech

Speech 
parameters 

Head direction 
parameters 

 

Figure 2. System architecture 

Table 4. Models implemented in the system 

Model name Number of 
parameters 

Applicable 
condition 

Speech + 
Head_direction 

Speech: 6 

Head: 14 

Obtain all the 
parameter values 

Speech Speech:6 

Head:0 

Fail in measuring 
head direction 

Power + 
Speech_duration 
+ Head_direction 

Speech: 3 

Head: 14 

Fail in measuring 
F0 and speech 
rate 

Power + 
Speech_duration  

Speech: 3 

Head: 0 

Fail in measuring 
F0, speech rate, 
and head 
direction 
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created above, and represents each result as a keyword vector. 
Each keyword in the vectors has a weight that is determined based 
on the likelihood of recognition results. The input keyword vector 
is sent to the language understanding component.  

(2) Language understanding: We employ similarity-based 
language understanding. First, user utterances collected in section 
3.1 are used as possible user utterances. Each utterance candidate 
is represented as a keyword vector. Keywords in the candidate 
vectors are also weighted. We calculated the tf-idf value of each 
keyword and used it as the weight of the keyword. The similarity 
between each candidate and the input keyword vector obtained 
from the speech recognition component is calculated using the 
vector-space model, and a candidate with the highest cosine 
similarity is chosen as the result of language understanding. We 
also set a threshold for the similarity judgment. If the input vector 
does not have enough similarity to any of the possible user 
utterances (no candidate exceeds the threshold), the language 
understanding fails. Finally, once a candidate with the best 
similarity score is determined, a semantic representation for that 
utterance is produced and sent to the conversation manager.  

4.3 Conversation Manager 
The conversation manager consists of two components: the 
conversation state manager and the conversation controller. The 
conversation state manager maintains and updates the 
conversation state, and the conversation controller determines the 
agent’s next action to respond to the user.  

(1) Conversation state manager: As the information state of the 
conversation, the conversation state manager maintains ten kinds 
of information, including time stamp, current and previous states 
of the conversation controller, number of users, utterance ID, 
result of the understanding module, speaker, addressee, and agent 
utterance as system output. When a user utterance is detected or 
the agent utterance is produced, information in the conversation 
state is updated.  

(2) Conversation controller: The conversation controller 
determines the next agent action using a state transition model. 
Our state transition model was implanted using an extended 
version of GECA Scenario Markup Language (GSML) [12], 
which shares the basic ideas of Artificial Intelligence Markup 
Language (AIML).  

The conversation controller refers the semantic representation of 
the user’s utterance and the addressee identification result stored 
in the information state. When the addressee of the current user 
speech is estimated to be the agent, the state in the transition 

model is shifted according to the meaning of the user’s utterance. 
Then, the next agent utterance is determined based on the state. In 
the current implementation of the conversation controller, the 
state transition is triggered by the user’s utterance to the agent, so 
that the agent responds to the user only when the utterance is 
addressed to the agent. Once the next agent utterance is 
determined, it is sent to the generation module.  

4.4 Generation Module 
In the generation module, the utterance content determined in the 
conversation controller is realized as surface language expressions 
using a simple template generation technique, and then a 
sequence of words is sent to the animation module. In the 
animation module, the agent character animation is produced 
using visageSDK [2]. The word string is also sent to a TTS to 
produce synthesized voice.  

Figure 3 shows the system running in real time. Figure 3(a) shows 
a pair of users interacting with the agent, and the two pictures in 
(b) are the monitoring windows for face tracking. Figure 3(c) is a 
snapshot of the information state that is updated whenever a user 
utterance or the result of addressee identification is perceived.  

5. EVALUATION EXPERIMENT 
We conducted an evaluation experiment to examine the 
effectiveness of the addressee identification mechanism in our 
autonomous multiparty conversation agent.  

5.1 Procedure and Conditions 
We compared the following two systems, in which different 
addressee identification mechanisms were installed.  

Proposed addressee identification mechanism (Proposed 
system): This is the proposed system implemented in section 4. In 
this system, the model for judging the addressee is switched 
according to which information is obtained from the input devices, 
as described in section 4.1.  

Simple head-orientation-based addressee identification 
mechanism (Baseline system): As a naïve addressee 
identification mechanism, we implemented a system that 
determined the addressee based on the time ratio of the head-
direction. By comparing the time ratios of looking at the agent 
and looking at the partner for a given utterance, the gaze target 
with the largest time ratio was determined as the addressee.  

The experiment was conducted using the within-subject design, 
with eight pairs of subjects participating in the experiment. We 
used the same travel-planning task as in the data collection 

Face tracking camera

Microphone for ASR

(b) (c)(a) (b)
 

Figure 3. System running in real time. (a) interaction between subject pair and agent, (b) face tracking for each subject,  
(c) snapshot of part of information state 
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experiment in section 3.1. The task of the subjects was also the 
same except for the number of places to choose from. In this 
experiment, the subjects chose one place from eight historical 
places. The subjects were instructed to ask the agent about the 
places if necessary. In addition to the contents for the Kyoto area, 
we developed new contents for Nara, another historical city in 
Japan. Thus, we had four combinations in this experiment (2 
experimental conditions (Proposed system or Baseline system) × 
2 conversation contents (Kyoto or Nara)). Each subject pair was 
randomly assigned to one of these combinations to cancel out the 
bias caused by the order and the contents.  

As shown in Figure 3, the agent was displayed on a 57-inch 
display, and the subjects were standing about 1.2m away from the 
display. A web-cam was mounted on top of the display for face 
tracking, and a microphone for addressee identification and 
speech recognition was set up between the subjects 50cm away 
from them.  

5.2 Results 
We collected 349 user utterances for the proposed system and 308 
utterances for the baseline system. Addressee-hood was manually 
judged for these utterances, and was used as the ground truth in 
evaluating the systems. The evaluation results are shown in Table 
5.  

For utterances addressed to the agent, the precision rate for the 
proposed system was 0.88, which was higher than that for the 
baseline system (0.84). However, the recall rate for the proposed 
system was lower than the baseline system. Thus, the F-measure 
of the proposed system (0.80) was slightly worse than the baseline 
system (0.83).  

For utterances addressed to the partner, both the precision and 
recall rates of the proposed system were higher than those of the 
baseline system. Especially for the recall rate, the proposed 
system was 0.70, but in the baseline system, it dropped to 0.46. 
Moreover, the F-measure for the proposed system was also higher 
than that for the baseline system. The analysis in section 3.2.2 can 
account for this result. In both Exp 1 and 2, the time ratio of 
looking at the partner was lower than 50% when talking to the 
partner. Similarly, in the evaluation experiment, the subjects did 
not always look at the partner when talking to the partner, thus, 
the baseline system that relied only on the head-direction 
information was more likely to misjudge the addressee. 

Compared to the baseline system, the proposed system was more 
careful in judging the agent as the addressee, and more likely to 
judge the partner as the addressee. Thus, the precision rate for 
utterances to the agent was very high (0.88), but the recall rate 
was lower (0.76). As the proposed system used prosodic features 
in addressee-hood judgment, the addressee was mistakenly judged 
as the partner when the speech power was not large enough.  

In contrast, the baseline system was more likely to judge the agent 
as the addressee. This caused serious problems in human-agent 
interaction because the baseline system interrupted the 
conversation between the subjects by mistakenly judging an 
utterance addressed to the partner as one to the agent. In such 
cases, the conversation was disrupted by the agent’s abrupt 
interruption.  

Overall, for the utterances addressed to the agent, the F-measure 
of the proposed system was 0.80, which is close to the model 
evaluation result shown in Table 2, indicating that the system 
performance is good enough. For utterances addressed to the 
partner, the F-measure was 0.56, which was much worse than the 
model evaluation result, but this is still much better than the 
baseline system, especially in recall rate. Thus, the evaluation 
results indicate that with our addressee identification method 
installed in an autonomous conversational agent, the system can 
avoid annoying the users, and makes human-agent multiparty 
conversations more stable. 

6. CONCLUSIONS AND FUTURE 
DIRECTIONS 
This study proposed a fully autonomous multiparty conversational 
agent with an addressee identification mechanism using speech 
and head-direction information. First, we conducted two WOZ 
experiments to collect multiparty conversations under two 
different proxemics between a subject pair and an agent. The 
results of the data analysis showed that speech and head-direction 
information is useful in addressee identification regardless of the 
proxemics. Based on the results, we exploited 20 features, and by 
applying SVM to all the collected data, we created general 
models for addressee identification. The accuracy of the models 
was over 80% in model evaluation, suggesting that the models are 
good enough to be used in system implementation. Based on the 
model, we developed an addressee identification mechanism that 
applied the models to speech information and head direction 
estimated from face tracking data, and then, incorporated the 
mechanism into a multiparty conversation system. Finally, we 
conducted a system evaluation experiment to test whether the 
proposed addressee identification mechanism performs well in a 
real-time system. The F-measure for speech addressed to the 
agent was 0.8 and that addressed to the partner was 0.56. We also 
found that our system successfully avoided disturbing the 
conversation by mistakenly taking a turn when the agent is not 
addressed.  

Our addressee identification mechanism needs to be improved, 
especially for speech addressed to the partner. One promising 
approach is to consider the meaning of the user’s utterance by 
checking the consistency between the utterance content 
interpreted by the understanding module and the addressee 
identification result. Suppose that the user asks about details of a 
temple after the agent’s overview explanation about that place. In 
such a case, the system should infer that the utterance is addressed 
to the agent. If the utterance content and the addressee are not 
consistent, the system should clarify the user’s utterance to avoid 
conversation failure. In addition, it is also necessary to measure 
more parameters automatically and add them to the models.  

The generation side also needs to be improved. In the current 
system, the agent does not display any gaze or facial expression. 
It would be preferable if the agent could display floor 

Table 5. Evaluation of system performance 

 
Speech to the agent Speech to the partner 

Proposed Baseline Proposed Baseline 

Precision 0.88 0.84 0.56 0.51 

Recall 0.76 0.85 0.70 0.46 

F-measure 0.80 0.83 0.56 0.44 
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management nonverbal signals according to the participation 
roles: speaker, listener, and side-participant.  
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Appendix: A list of parameters for addressee identification 
<Speech features> 
- s1: average F0 of the utterance 
- s2: average intensity of the utterance 
- s3: speech rate of the utterance 
- s4: duration of the utterance 
- s5: difference between s1 and the average F0 for all the subjects 
of the same gender 
- s6: difference between s2 and the average intensity for all the 
subjects of the same gender 
<Head direction features> 
- f1: ratio of the time the speaker spends looking at the agent to 
the duration of the current utterance 
- f2: ratio of the time the speaker spends looking at the partner to 
the duration of the current utterance. 

- f3: ratio of the time the speaker spends looking elsewhere to the 
duration of the current utterance. 
- f4: the number of head direction shifts from the agent to the 
partner in the current utterance (agent->partner). 
- fh5: the number of head direction shifts from the agent to 
elsewhere in the current utterance (agent->elsewhere). 
- f6: the number of head direction shifts from the partner to the 
agent in the current utterance (partner->agent). 
- f7: the number of head direction shifts from elsewhere to the 
agent in the current utterance (elsewhere->agent). 
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